期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于目标空间分解的自适应多目标进化算法 被引量:1
1
作者 郑金华 张作峰 邹娟 《高技术通讯》 CAS CSCD 北大核心 2013年第7期671-678,共8页
针对基于分解的多目标进化算法(MOEA/D)个体与子问题的匹配问题,在分析MOEA/D的进化规律的基础上,提出了一种基于目标空间分解的自适应多目标进化算法(MOEA/OSD)。该算法采用以测试问题的参考点为起点的均匀权重向量分解目标空间,根据... 针对基于分解的多目标进化算法(MOEA/D)个体与子问题的匹配问题,在分析MOEA/D的进化规律的基础上,提出了一种基于目标空间分解的自适应多目标进化算法(MOEA/OSD)。该算法采用以测试问题的参考点为起点的均匀权重向量分解目标空间,根据个体信息动态选择适合的子问题,并使用辅助向量的方法弥补分解方法的不足。对比实验结果表明,MOEA/OSD拥有较好的收敛性和分布性,采用不同的分解方法均能搜索到最优解,且具有较好的收敛速度。 展开更多
关键词 目标优化 目标空间分解 子问题 自适应 适合的子问题
下载PDF
基于归一分解的并行多目标Dividing Rectangles算法
2
作者 李晨 陈逸东 +3 位作者 陆忠华 杨雪莹 王子田 迟学斌 《计算机研究与发展》 EI CSCD 北大核心 2024年第11期3909-3922,共14页
多目标优化问题普遍存在且难以解决,目前多采用多目标进化算法进行求解.然而,这些方法通常在种群初始化阶段和进化过程中包含随机操作以保持多样性,导致了其结果不可复现且缺乏全局收敛的理论保证.鉴于此,提出了一种基于归一分解的多目... 多目标优化问题普遍存在且难以解决,目前多采用多目标进化算法进行求解.然而,这些方法通常在种群初始化阶段和进化过程中包含随机操作以保持多样性,导致了其结果不可复现且缺乏全局收敛的理论保证.鉴于此,提出了一种基于归一分解的多目标Dividing Rectangles(DIRECT)算法,首先通过一种可较好捕捉复杂前沿的归一分解方法将原问题分解为一系列子问题,以降低问题计算复杂度;其次,采用Dividing Rectangles算法同时优化分解得到的子问题,并在优化过程中基于全局关联机制将生成的候选解分配给相应的子问题,以更好地保留优秀候选解并提高算法搜索效率;最后,证明了算法的收敛性.此外,为了进一步提高计算效率,提出了一种基于自适应关联迁移策略的多层次多粒度并行方案,并基于该方案对所提出的算法进行了并行化.将所提算法应用于多个基准优化问题,实验结果表明,相比于NSGA-II,所提串行算法能够产生收敛性、多样性更为优越的帕累托最优解集,并行算法可在大规模缩短问题求解时间的同时,进一步提升帕累托前沿近似精度. 展开更多
关键词 目标优化 目标空间分解 Dividing Rectangles算法 并行计算 全局优化
下载PDF
基于R2指标和目标空间分解的高维多目标粒子群优化算法 被引量:6
3
作者 李飞 吴紫恒 +1 位作者 刘阚蓉 葛二千 《控制与决策》 EI CSCD 北大核心 2021年第9期2085-2094,共10页
基于R2指标和分解策略的多目标粒子群优化算法(R2-MOPSO)在求解2、3个目标优化问题时具有较好的收敛性和多样性,但在求解高维多目标优化问题时难度较大.对此,提出一种基于R2指标和目标空间分解的高维多目标粒子群优化算法(R2-MOPSO-II)... 基于R2指标和分解策略的多目标粒子群优化算法(R2-MOPSO)在求解2、3个目标优化问题时具有较好的收敛性和多样性,但在求解高维多目标优化问题时难度较大.对此,提出一种基于R2指标和目标空间分解的高维多目标粒子群优化算法(R2-MOPSO-II).首先借鉴R2指标和目标空间分解策略综合权衡选择过程的收敛性和多样性,设计双层档案维护策略;然后设计一种新的向导选择策略来连接目标空间和决策变量空间,进而提出一种基于双层档案的速度和位置更新策略以权衡粒子群优化算法的勘探和开采能力;最后通过引入高斯学习策略和精英学习策略防止粒子陷入局部最优前沿.数值仿真结果表明,所提出算法在求解DTLZ和WFG测试问题时具有较好的收敛性和多样性. 展开更多
关键词 高维多目标优化 粒子群优化算法 双层档案 局部最优 R2指标 目标空间分解
原文传递
一种解多目标优化问题的基于分解的人工蜂群算法 被引量:2
4
作者 万鹏飞 高兴宝 《山东大学学报(理学版)》 CAS CSCD 北大核心 2018年第11期56-66,77,共12页
在处理多目标优化问题时,如何平衡所得解集的分布性与收敛性是一个困难又重要的工作。为此,提出了解决该问题的一种基于目标空间分解的人工蜂群算法(MOABC/D)。首先采用一组方向向量将目标空间分解成一系列的子区域,并在每一个子区域至... 在处理多目标优化问题时,如何平衡所得解集的分布性与收敛性是一个困难又重要的工作。为此,提出了解决该问题的一种基于目标空间分解的人工蜂群算法(MOABC/D)。首先采用一组方向向量将目标空间分解成一系列的子区域,并在每一个子区域至少保留一个解来保持解的分布性,其次提出一个基于分解的选择策略和2个基于信息交换的搜索策略来提高人工蜂群算法的搜索能力,并采用一个基于高斯分布的搜索策略来增强人工蜂群算法的搜索效率。为验证所提算法的性能,与8种同类算法在10个测试问题上进行比较。结果表明,本文所提算法得到的解集具有更好的收敛性能和分布性能。 展开更多
关键词 目标优化问题 目标空间分解 人工蜂群算法 搜索策略
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部