针对距离正则化的水平集演化(the Distance Regularized Level Set Evolution Mode,DRLSE)模型难以处理弱边缘图像、演化效率低问题,提出一种新的基于相位信息的水平集超声图像分割算法(the Distance Regularized Level Set Evolution M...针对距离正则化的水平集演化(the Distance Regularized Level Set Evolution Mode,DRLSE)模型难以处理弱边缘图像、演化效率低问题,提出一种新的基于相位信息的水平集超声图像分割算法(the Distance Regularized Level Set Evolution Mode Based on Phase Congruency,PDRLSE)。该算法利用相位一致性检测原理,构造新的边界指示函数,代替了DRLSE模型中的边界停止函数,得到新的能量泛函。实验结果表明:该方法在分割超声图像时,能够较好的分割出甲状腺肿瘤目标,且演化效率也有所提高。展开更多
文摘针对距离正则化的水平集演化(the Distance Regularized Level Set Evolution Mode,DRLSE)模型难以处理弱边缘图像、演化效率低问题,提出一种新的基于相位信息的水平集超声图像分割算法(the Distance Regularized Level Set Evolution Mode Based on Phase Congruency,PDRLSE)。该算法利用相位一致性检测原理,构造新的边界指示函数,代替了DRLSE模型中的边界停止函数,得到新的能量泛函。实验结果表明:该方法在分割超声图像时,能够较好的分割出甲状腺肿瘤目标,且演化效率也有所提高。