Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this pheno...Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this phenomenon are introduced in this paper,and co-seismic response data of water temperature and water level are used to check the thermometer time system,confirming that this phenomenon is true. Using the harmonic analysis method,variations of time difference between water temperature and water level for the M2 wave are worked out,which indicates that this phenomenon exists during the whole observation. According to the variations of phase lags for water temperature and water level,and the survey of observation conditions, it is considered that the abnormal phenomenon may be related to inadequate passage of water caused by a well blockage at the depth where the water temperature probe was set.展开更多
The North Atlantic Oscillation(NAO) exhibited a marked eastward shift in the mid-1970 s. Observations show that the extreme weather events in Europe have emerged frequently in the past decades. In this paper, based up...The North Atlantic Oscillation(NAO) exhibited a marked eastward shift in the mid-1970 s. Observations show that the extreme weather events in Europe have emerged frequently in the past decades. In this paper, based upon the daily NAO index, we have calculated the frequency of in-situ NAO events in winter during 1950-2011 by defining the Eastern-type NAO(ENAO) and Western-type NAO(WNAO) events according to its position at the east(west) of 10°W. Then, the composites of the blocking frequency, temperature and precipitation anomalies for different types of NAO events are performed. Results show that the frequency of Euro-Atlantic blocking events is distributed along the northwest-southeast(southwest-northeast) direction for the negative(positive) phase. Two blocking action centers in Greenland and European continent are observed during the negative phase while one blocking action center over south Europe is seen for the positive phase. The action center of blocking events tends to shift eastward as the NAO is shifted toward the European continent. Moreover, the eastern-type negative phase(ENAO) events are followed by a sharp decline of surface air temperature over Europe(especially in central, east, and south Europe), which have a wider and stronger impact on the weather over European continent than the western-type negative phase(WNAO) events do. A double- branched structure of positive precipitation anomalies is seen for the negative phase event, besides strong positive precipitation anomalies over south Europe for ENAO event. The eastern-type and western-type positive phase(ENAO+ and WNAO+) can lead to warming over Europe. A single-branched positive precipitation anomaly dominant in central and north Europe is seen for positive phase events.展开更多
We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors...We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model. By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors, we find that they, as expected, tend to phase-lock to the annual cycles in the Zebiak-Cane model with the SSTA peak at the end of a calendar year. However, E1 Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear E1 Nino events despite the existence of annual cycles in the model. It is clear that nonlinearities play an important role in El Nino's phase-locking. In particular, nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies, which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and, as a result, enhances E1 Nino and then delays the peak SSTA. Finally, we demonstrate that nonlinear temperature advection, together with the effect of the annual cycle, causes El Nino events to peak at the end of the calendar year.展开更多
基金funded by the 12th "Five-year Plan" of National Science and Technology Sponsored Project,China(2012BAK19B02-04)
文摘Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this phenomenon are introduced in this paper,and co-seismic response data of water temperature and water level are used to check the thermometer time system,confirming that this phenomenon is true. Using the harmonic analysis method,variations of time difference between water temperature and water level for the M2 wave are worked out,which indicates that this phenomenon exists during the whole observation. According to the variations of phase lags for water temperature and water level,and the survey of observation conditions, it is considered that the abnormal phenomenon may be related to inadequate passage of water caused by a well blockage at the depth where the water temperature probe was set.
基金supported by the National Natural Science Foundation of China(Grant No.41375067)
文摘The North Atlantic Oscillation(NAO) exhibited a marked eastward shift in the mid-1970 s. Observations show that the extreme weather events in Europe have emerged frequently in the past decades. In this paper, based upon the daily NAO index, we have calculated the frequency of in-situ NAO events in winter during 1950-2011 by defining the Eastern-type NAO(ENAO) and Western-type NAO(WNAO) events according to its position at the east(west) of 10°W. Then, the composites of the blocking frequency, temperature and precipitation anomalies for different types of NAO events are performed. Results show that the frequency of Euro-Atlantic blocking events is distributed along the northwest-southeast(southwest-northeast) direction for the negative(positive) phase. Two blocking action centers in Greenland and European continent are observed during the negative phase while one blocking action center over south Europe is seen for the positive phase. The action center of blocking events tends to shift eastward as the NAO is shifted toward the European continent. Moreover, the eastern-type negative phase(ENAO) events are followed by a sharp decline of surface air temperature over Europe(especially in central, east, and south Europe), which have a wider and stronger impact on the weather over European continent than the western-type negative phase(WNAO) events do. A double- branched structure of positive precipitation anomalies is seen for the negative phase event, besides strong positive precipitation anomalies over south Europe for ENAO event. The eastern-type and western-type positive phase(ENAO+ and WNAO+) can lead to warming over Europe. A single-branched positive precipitation anomaly dominant in central and north Europe is seen for positive phase events.
基金sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN203)the National Basic Research Program of China(Grant Nos.2010CB950400&2012CB955202)the National Natural Science Foundation of China(Grant No.41176013)
文摘We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model. By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors, we find that they, as expected, tend to phase-lock to the annual cycles in the Zebiak-Cane model with the SSTA peak at the end of a calendar year. However, E1 Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear E1 Nino events despite the existence of annual cycles in the model. It is clear that nonlinearities play an important role in El Nino's phase-locking. In particular, nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies, which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and, as a result, enhances E1 Nino and then delays the peak SSTA. Finally, we demonstrate that nonlinear temperature advection, together with the effect of the annual cycle, causes El Nino events to peak at the end of the calendar year.