Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We review...Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We reviewed 41 patients (41 eyes) suffering exposure of orbital implants from Jan. 2000 to June 2006. The study group patients with mild exposure received com-bined treatment with bFGF and antibiotic drops, and while the control group patients with mild exposure were treated with anti-biotic drops only. The study group patients with moderate and severe exposure received combined treatment with bFGF and antibiotic drops, and after 2 months they were subjected to amniotic membrane transplantation, while the control group patients with moderate and severe exposure underwent amniotic membrane transplantation after using antibiotic drops. Observation of the growth of conjunctival epithelium and comparison of the healing rate of the two groups. Results: The healing rates of the mild, moderate and severe exposure study group were 100% and 92.3%. The healing rates of the mild, moderate and severe exposure control group were 55.6% and 66.7% respectively. The difference of the healing rates of the mild exposure study group and the control group was significant (P=0.033). And the difference of the healing rates of the moderate and severe exposure study group and the control group was not significant (P=0.167). Conclusion: bFGF may promote obviously the healing of orbital implant exposure, particularly it can be the first choice for the treatment of mild degree exposure. For the moderate and severe cases, it can be administered before surgical repair to enhance neovascularization and will tend to increase the success rate of surgical repair.展开更多
Objective: This study is aimed at describing the clinical outcome of amniotic membrane transplantation for exposure of porous sphere implants. Methods: A retrospective review of consecutive cases of porous sphere orbi...Objective: This study is aimed at describing the clinical outcome of amniotic membrane transplantation for exposure of porous sphere implants. Methods: A retrospective review of consecutive cases of porous sphere orbital implant exposure was carried out. Eight cases were presented between May 2004 and Oct. 2006 (5 males, 3 females; mean age 44.5 years). Six had enucleation and two had evisceration. Exposure occurred in two primary and six secondary. Orbital implant diameter was 22 mm in seven cases and 20 mm in one case. Six patients are with hydroxyapatite and two with high-density porous polyethylene (Medpor) orbital implants. The mean time from implantation to exposure was 1.1 months (range 0.8~2 months). All patients required surgical intervention. Results: The time of follow-up ranged from 3.0 to 28.0 months (mean 16.5 months). Amniotic membrane grafting successfully closed the defect without re-exposure in all of these patients. The grafts were left bare with a mean time to conjunctiva of about 1 month (range 0.8~1.5 months). Conclusion: Exposed porous sphere implants were treated suc-cessfully with amniotic membrane graft in all of patients. The graft is easy to harvest. This technique is useful, dose not lead to prolonged socket inflammation and infection, and it is valuable application extensively.展开更多
Objective: To investigate the effects and complications of primary and secondary placements of motility coupling post (MCP) in the unwrapped porous polyethylene orbital implant (PPOI) following enucleation. Meth...Objective: To investigate the effects and complications of primary and secondary placements of motility coupling post (MCP) in the unwrapped porous polyethylene orbital implant (PPOI) following enucleation. Methods: We investigated 198 patients who received PPOI implantation following the standard enucleation procedure in the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, from 2002 to 2004. These patients were subgrouped into PPOI-only patients (112 cases, received PPOI following enucleation), primary MCP patients (46 cases, received primary placement of MCP during PPOI operation), and secondary MCP patients (40 cases, received secondary placement ofMCP 6 months after the initial surgery). Effects and complications among these three groups were compared. Results: The PPOI-only patients took shorter treatment course when compared with other two MCP groups (P〈0.001), without significant difference noted between the two MCP groups. However, the two MCP groups had better prosthetic motility than PPOI-only group (P〈0.001), without significant difference between the two MCP groups. In the early stage, 2 eyes in the PPOI-only group and l eye in the primary MCP group had PPOI infection. In PPOI-only group, 3 (2.68%) eyes had PPOI exposure, which occurred after fitting the prostheses; 4 eyes (8.70%) in primary MCP group and 1 eye (2.50%) in secondary MCP had PPOI exposure, which occurred before fitting the prostheses. After prosthesis was fit successfully, the excessive discharge and granuloma were 33.9% and 1.79% in PPOI group-only, 53.3% and 8.9% in primary MCP group, and 52.5% and 7.5% in secondary MCP group, respectively. Conclusion: Both primary and secondary placements of MCP into the PPOI following enucleation can help patients to obtain desirable prosthetic motility, but may be associated with more complications. The primary placement of MCP with skilled operation in selected patients is more recommendable than secondary placement.展开更多
文摘Objective: To evaluate the efficacy and the indication of basic fibroblast growth factor (bFGF) in the treatment of exposure of orbital implants. Design: Retrospective and observational case series. Methods: We reviewed 41 patients (41 eyes) suffering exposure of orbital implants from Jan. 2000 to June 2006. The study group patients with mild exposure received com-bined treatment with bFGF and antibiotic drops, and while the control group patients with mild exposure were treated with anti-biotic drops only. The study group patients with moderate and severe exposure received combined treatment with bFGF and antibiotic drops, and after 2 months they were subjected to amniotic membrane transplantation, while the control group patients with moderate and severe exposure underwent amniotic membrane transplantation after using antibiotic drops. Observation of the growth of conjunctival epithelium and comparison of the healing rate of the two groups. Results: The healing rates of the mild, moderate and severe exposure study group were 100% and 92.3%. The healing rates of the mild, moderate and severe exposure control group were 55.6% and 66.7% respectively. The difference of the healing rates of the mild exposure study group and the control group was significant (P=0.033). And the difference of the healing rates of the moderate and severe exposure study group and the control group was not significant (P=0.167). Conclusion: bFGF may promote obviously the healing of orbital implant exposure, particularly it can be the first choice for the treatment of mild degree exposure. For the moderate and severe cases, it can be administered before surgical repair to enhance neovascularization and will tend to increase the success rate of surgical repair.
文摘Objective: This study is aimed at describing the clinical outcome of amniotic membrane transplantation for exposure of porous sphere implants. Methods: A retrospective review of consecutive cases of porous sphere orbital implant exposure was carried out. Eight cases were presented between May 2004 and Oct. 2006 (5 males, 3 females; mean age 44.5 years). Six had enucleation and two had evisceration. Exposure occurred in two primary and six secondary. Orbital implant diameter was 22 mm in seven cases and 20 mm in one case. Six patients are with hydroxyapatite and two with high-density porous polyethylene (Medpor) orbital implants. The mean time from implantation to exposure was 1.1 months (range 0.8~2 months). All patients required surgical intervention. Results: The time of follow-up ranged from 3.0 to 28.0 months (mean 16.5 months). Amniotic membrane grafting successfully closed the defect without re-exposure in all of these patients. The grafts were left bare with a mean time to conjunctiva of about 1 month (range 0.8~1.5 months). Conclusion: Exposed porous sphere implants were treated suc-cessfully with amniotic membrane graft in all of patients. The graft is easy to harvest. This technique is useful, dose not lead to prolonged socket inflammation and infection, and it is valuable application extensively.
文摘Objective: To investigate the effects and complications of primary and secondary placements of motility coupling post (MCP) in the unwrapped porous polyethylene orbital implant (PPOI) following enucleation. Methods: We investigated 198 patients who received PPOI implantation following the standard enucleation procedure in the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, from 2002 to 2004. These patients were subgrouped into PPOI-only patients (112 cases, received PPOI following enucleation), primary MCP patients (46 cases, received primary placement of MCP during PPOI operation), and secondary MCP patients (40 cases, received secondary placement ofMCP 6 months after the initial surgery). Effects and complications among these three groups were compared. Results: The PPOI-only patients took shorter treatment course when compared with other two MCP groups (P〈0.001), without significant difference noted between the two MCP groups. However, the two MCP groups had better prosthetic motility than PPOI-only group (P〈0.001), without significant difference between the two MCP groups. In the early stage, 2 eyes in the PPOI-only group and l eye in the primary MCP group had PPOI infection. In PPOI-only group, 3 (2.68%) eyes had PPOI exposure, which occurred after fitting the prostheses; 4 eyes (8.70%) in primary MCP group and 1 eye (2.50%) in secondary MCP had PPOI exposure, which occurred before fitting the prostheses. After prosthesis was fit successfully, the excessive discharge and granuloma were 33.9% and 1.79% in PPOI group-only, 53.3% and 8.9% in primary MCP group, and 52.5% and 7.5% in secondary MCP group, respectively. Conclusion: Both primary and secondary placements of MCP into the PPOI following enucleation can help patients to obtain desirable prosthetic motility, but may be associated with more complications. The primary placement of MCP with skilled operation in selected patients is more recommendable than secondary placement.