为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降...为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。展开更多
相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研...相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。展开更多
针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toepl...针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。展开更多
为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM...为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM)的鲁棒波束形成方法。对此,首先基于波束形成器最大输出功率准则,设计了求解最优导向矢量的优化模型。接着,根据Capon算法空间功率谱函数,利用定义的干扰范围对协方差矩阵进行重构,以展宽零陷并增强系统抗运动干扰能力。最后,关于导向矢量的二次不等式约束问题,本质为估计导向矢量和期望导向矢量间的差异,该方法利用ADMM对该二次规划问题进行迭代求解,并在每次迭代中获得导向矢量的具体解。另外,也分析了算法的复杂度。实验结果表明:对比现有的波束形成算法,在干扰处加宽了零陷,提高了波束的抗干扰性;结合复杂度也证明了其计算速度优于现有的算法,并且能够很好地校正失配导向矢量。本方法也为求解二次不等式约束问题和提高波束形成算法性能提供了一种思路和途径。展开更多
针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进...针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。展开更多
文摘为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。
文摘相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。
文摘针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。
文摘为解决传统波束形成器在干扰位置发生扰动和导向矢量失配时,造成自适应权重的不匹配,从而导致算法性能急剧下降,甚至期望信号相消的问题,提出一种联合协方差矩阵重构和交替方向乘子法(Alternating direction method of multipliers,ADMM)的鲁棒波束形成方法。对此,首先基于波束形成器最大输出功率准则,设计了求解最优导向矢量的优化模型。接着,根据Capon算法空间功率谱函数,利用定义的干扰范围对协方差矩阵进行重构,以展宽零陷并增强系统抗运动干扰能力。最后,关于导向矢量的二次不等式约束问题,本质为估计导向矢量和期望导向矢量间的差异,该方法利用ADMM对该二次规划问题进行迭代求解,并在每次迭代中获得导向矢量的具体解。另外,也分析了算法的复杂度。实验结果表明:对比现有的波束形成算法,在干扰处加宽了零陷,提高了波束的抗干扰性;结合复杂度也证明了其计算速度优于现有的算法,并且能够很好地校正失配导向矢量。本方法也为求解二次不等式约束问题和提高波束形成算法性能提供了一种思路和途径。
文摘针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。