针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu...针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.展开更多
基金国家自然科学基金资助项目(6147212861173108)+1 种基金National Natural Science Foundation of China(6147212861173108)
文摘针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显.