期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:1
1
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 短期记忆网络 门控循环单元
下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
2
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
3
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
4
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于SSA-VMD-INGO-RF的短期风电功率预测
5
作者 汪繁荣 梅涛 +2 位作者 张旭东 汪筠涵 肖悦 《现代电子技术》 北大核心 2024年第24期88-96,共9页
为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系... 为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系数α)进行寻优,通过SSA-VMD将原始功率序列分解为多个有限带宽的特征模态分量,以降低原始数据的复杂度和非平稳性对预测精度的影响;然后,构建模态分量并在改进的北方苍鹰算法优化随机森林中进行预测;最后,将各分量预测结果叠加,得到最终预测值。以内蒙古某风电场的实测数据为研究对象,将所提组合模型与另外6种模型进行比较。结果表明,所设计模型预测结果平均绝对百分比误差(MAPE)为1.734%,均方根误差为0.068 MW,R^(2)为0.992,证明了该模型的有效性。 展开更多
关键词 短期风电功率预测 北方苍鹰算法 Piecewise混沌映射 随机森林 变分模态分解 麻雀搜索算法
下载PDF
改进BBO优化BP神经网络的短期风电功率预测模型
6
作者 罗丹 章若冰 +1 位作者 余娟 谭芝娴 《绿色科技》 2024年第12期263-269,共7页
为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权... 为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权重优化,进一步提升短期风电功率预测的准确度和稳定性。通过实际应用案例表明,与其他优化算法相比,提出的模型在MAE、RMSE和MAPE上的表现分别平均提高了43.21%、37.98%和36.84%,显示出更高的预测准确度,仿真结果验证了本方法在短期风电功率预测领域的效果及其明显的优势。 展开更多
关键词 短期风电功率预测 完全自适应噪声集合经验模态分解 反向传播神经网络 生物地理学优化算法
下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:3
7
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
下载PDF
基于VMD-CNN-LSTM模型的短期风电功率预测 被引量:1
8
作者 李润金 李丽霞 《沈阳工程学院学报(自然科学版)》 2024年第1期6-13,共8页
风电功率的精准预测是提高风电并网稳定性的重要手段之一。针对气象特征复杂性与随机性引起风电功率难以精准预测的问题,提出了一种基于VMD-CNN-LSTM的短期风电功率预测模型。该模型总体结构包括多气象特征序列变分模态分解(VMD)与重构... 风电功率的精准预测是提高风电并网稳定性的重要手段之一。针对气象特征复杂性与随机性引起风电功率难以精准预测的问题,提出了一种基于VMD-CNN-LSTM的短期风电功率预测模型。该模型总体结构包括多气象特征序列变分模态分解(VMD)与重构、卷积神经网络(CNN)挖掘多气象特征信息、长短期记忆网络(LSTM)预测结果输出、泛化能力分析。与目前仅考虑分解历史风电功率序列分别建立预测模型方法相比,本文所提出的VMD方法物理意义明确,能够跟踪气象特征预测未来风电功率趋势。在某风电场的实际数据上进行验证,算例结果表明:该模型预测结果精度较高,降低了多气象特征因素对预测结果的影响,具有一定的实用性。 展开更多
关键词 短期风电功率预测 经验模态分解 卷积神经网络 短期记忆网络
下载PDF
基于变分模态分解改进生成对抗网络的短期风电功率预测
9
作者 江善和 李伟 +1 位作者 徐小艳 王德凯 《综合智慧能源》 CAS 2024年第2期28-35,共8页
风电功率的可预测性和预测准确性取得了一定的研究成果,但风电数据中气象和功率的强非线性制约了短期预测精度的进一步提高,提高短期风电功率预测的精度已成为研究的热点与难点。针对风电数据非线性且非稳定的特点,基于分解思想提出一... 风电功率的可预测性和预测准确性取得了一定的研究成果,但风电数据中气象和功率的强非线性制约了短期预测精度的进一步提高,提高短期风电功率预测的精度已成为研究的热点与难点。针对风电数据非线性且非稳定的特点,基于分解思想提出一种基于变分模态分解改进生成对抗网络的短期风电功率预测方法。该方法使用变分模态分解分散风电数据中的非线性,将复杂序列的预测任务转化为多个较为简单序列的预测任务;设计了激活函数和损失函数,解决传统生成对抗网络模型不稳定问题,并对所设计激活函数的关键参数进行了分析。Bengaluru风电场某风机数据的算例测试表明,所提方法取得了较好的预测结果,其均方误差相比长短期记忆网络和变分模态分解-长短记忆网络方法分别下降了79.65%和51.83%。 展开更多
关键词 短期风电功率预测 变分模态分解 生成对抗网络 短期记忆神经网络 激活函数
下载PDF
基于SSA-BiLSTM-AT的短期风电功率预测
10
作者 王珊珊 吴霓 +2 位作者 何嘉文 朱威 杨宇晨 《湖北工业大学学报》 2024年第5期25-30,共6页
针对短期风电功率的复杂性与多样性,提出一种含注意力机制的双向长短期记忆网络(BiLSTM)神经网络和麻雀算法(SSA)调参的短期风电功率预测模型,SSA-BiLSTM-AT。首先对输入数据进行异常值处理和归一化,采用Pearson相关系数法分析风电功率... 针对短期风电功率的复杂性与多样性,提出一种含注意力机制的双向长短期记忆网络(BiLSTM)神经网络和麻雀算法(SSA)调参的短期风电功率预测模型,SSA-BiLSTM-AT。首先对输入数据进行异常值处理和归一化,采用Pearson相关系数法分析风电功率和各特征之间的关系,剔除数据中的相关度较低的特征,以提高模型的预测精度;针对BiLSTM超参数选择困难的问题,利用麻雀算法对BiLSTM中学习率、迭代次数、第1和第2隐含层节点数4个重要参数进行智能迭代优化,得到最优参数后利用BiLSTM进行预测;最后引入注意力机制,通过注意力权重突出关键因素的影响,挖掘风电数据的内部规律。以新疆某风电站的历史数据作为实际算例,验证了所提模型线性回归拟合能力的稳定性和提升预测精度的有效性。 展开更多
关键词 短期风电功率预测 BiLSTM算法 注意力机制 麻雀算法
下载PDF
基于WOA-BP的短期风电功率预测研究
11
作者 雷帅帅 慕昕辰 +2 位作者 辛悦昊 邱译航 董克楠 《电子制作》 2024年第15期102-104,120,共4页
针对风电功率预测易受风速随机性、波动性等因素的影响而导致预测精度不高的问题,本文提出了一种基于鲸鱼优化(WOA)算法优化BP神经网络(WOA-BP)的风电功率预测方法。利用鲸鱼算法对BP神经网络进行训练,对BP网络中的初始权值和阈值进行寻... 针对风电功率预测易受风速随机性、波动性等因素的影响而导致预测精度不高的问题,本文提出了一种基于鲸鱼优化(WOA)算法优化BP神经网络(WOA-BP)的风电功率预测方法。利用鲸鱼算法对BP神经网络进行训练,对BP网络中的初始权值和阈值进行寻优,避免传统的BP神经网络算法易陷入局部最优的情况,达到提高预测精度的目的。通过具体的案例对模型进行验证,还与其他预测模型进行比较,分析结果表明本文所提出的WOA-BP的短期风电功率预测模型的预测精度更高,性能更优。 展开更多
关键词 鲸鱼算法 短期风电功率预测 预测精度
下载PDF
基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
12
作者 陈烨烨 李瑶 李捍东 《分布式能源》 2024年第2期1-7,共7页
为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电... 为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电功率预测模型。首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果。使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比。结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差。 展开更多
关键词 电功率短期预测 变分模态分解(VMD) 排列熵(PE) 多层双向长短时记忆(MultiBiLSTM)
下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
13
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子群优化算法 支持向量回归机
下载PDF
基于IAFSA-BPNN的短期风电功率预测 被引量:30
14
作者 张颖超 王雅晨 +2 位作者 邓华 熊雄 陈浩 《电力系统保护与控制》 EI CSCD 北大核心 2017年第7期58-63,共6页
为提高短期风电功率预测精度,提出一种基于IAFSA-BPNN的短期风电功率预测方法。该方法通过改进的人工鱼群算法来优化BP神经网络的权值和阈值,从而提高BP神经网络的收敛速度和泛化能力。利用2014年上海某风场实测数据对新算法进行检验。... 为提高短期风电功率预测精度,提出一种基于IAFSA-BPNN的短期风电功率预测方法。该方法通过改进的人工鱼群算法来优化BP神经网络的权值和阈值,从而提高BP神经网络的收敛速度和泛化能力。利用2014年上海某风场实测数据对新算法进行检验。试验结果表明,改进的人工鱼群算法一定程度上克服了原算法后期搜索的盲目性较大,收敛速度减慢,搜索精度变低的缺陷。IAFSA-BPNN混合算法在预测的稳定性和精度、收敛速度等方面优于BPNN、AFSA-BPNN算法。IAFSA-BPNN算法不仅能提高短期风电功率预测的精度,而且改善了预测结果稳定性。 展开更多
关键词 短期风电功率预测 人工鱼群算法 BP神经网络 IAFSA-BPNN
下载PDF
短期风电功率预测误差综合评价方法 被引量:147
15
作者 徐曼 乔颖 鲁宗相 《电力系统自动化》 EI CSCD 北大核心 2011年第12期20-26,共7页
对短期风电功率预测误差进行综合评价是改进预测精度、指导预测结果合理应用的前提。当前风电功率预测误差评价主要采用均值类指标,无法全面、准确反映预测系统的运行情况。文中总结了风电功率预测误差的主要存在形式,提出了一套包含纵... 对短期风电功率预测误差进行综合评价是改进预测精度、指导预测结果合理应用的前提。当前风电功率预测误差评价主要采用均值类指标,无法全面、准确反映预测系统的运行情况。文中总结了风电功率预测误差的主要存在形式,提出了一套包含纵向误差、横向误差、相关因子与极端误差等在内的综合评价方法。基于内蒙古某风电场实际数据,采用该方法对不同预测方法、预测系统的不同误差环节进行了较为全面的评价,验证了评价指标的指导价值。 展开更多
关键词 短期风电功率预测 误差评价 误差指标 数值天气预报
下载PDF
基于风速升降特征的短期风电功率预测 被引量:10
16
作者 叶小岭 陈浩 +2 位作者 郭晓杰 邓华 王雅晨 《电力系统保护与控制》 EI CSCD 北大核心 2016年第19期56-62,共7页
为提高短期风电功率预测精度,提出了基于风速升降特征的短期风电功率预测方法。该方法分析风速上升或下降对风力发电的影响,根据风速升降特征,为风速添加标记值,增加训练样本维度,从而提高功率预测精度。用上海某风电场2014年9月至2015... 为提高短期风电功率预测精度,提出了基于风速升降特征的短期风电功率预测方法。该方法分析风速上升或下降对风力发电的影响,根据风速升降特征,为风速添加标记值,增加训练样本维度,从而提高功率预测精度。用上海某风电场2014年9月至2015年9月数据对算法进行验证,并对比最小二乘支持向量机(LSSVM)、极限学习机(ELM)、遗传BP神经网络(GA-BP)三种方法的预测结果。实验结果表明,在风电功率预测中引入风速升降特征能够明显提高了模型的预测精度,适合风电场的短期功率预测。 展开更多
关键词 短期风电功率预测 速升降特征 特征值 LSSVM ELM GA-BP
下载PDF
超短期风电功率预测误差数值特性分层分析方法 被引量:40
17
作者 叶林 任成 +2 位作者 赵永宁 饶日晟 滕景竹 《中国电机工程学报》 EI CSCD 北大核心 2016年第3期692-700,共9页
风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法... 风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法。在概率密度特性提取部分,采用改进后的广义误差分布模型对预测误差概率密度分布进行拟合。该误差分析方法结合了误差模型预测和误差概率密度拟合两种方法的优点,可以更为准确地对超短期风电功率预测误差进行分析和补偿。算例分析结果表明,改进广义误差分布模型的拟合效果优于正态分布、柯西分布和拉普拉斯分布这些常用模型,尤其在尾部特性拟合方面效果更为明显,所提出的误差分层分析方法可以有效减小风电功率预测误差。 展开更多
关键词 短期风电功率预测 广义误差分布 分层分析 误差补偿
下载PDF
基于小波分析和PSO优化神经网络的短期风电功率预测 被引量:12
18
作者 叶小岭 刘波 +1 位作者 邓华 肖寅 《可再生能源》 CAS 北大核心 2014年第10期1486-1492,共7页
针对风电场风速和风电功率序列起伏波动大、无明显变化规律等特点以及传统神经网络收敛速度慢、易陷入局部极小值等缺陷,提出了基于小波分析和改进粒子群算法优化神经网络的短期风电功率预测方法。首先,通过小波方法将用于神经网络训练... 针对风电场风速和风电功率序列起伏波动大、无明显变化规律等特点以及传统神经网络收敛速度慢、易陷入局部极小值等缺陷,提出了基于小波分析和改进粒子群算法优化神经网络的短期风电功率预测方法。首先,通过小波方法将用于神经网络训练的历史风速和风电功率序列进行分解,再针对风速和风电功率的各个分量分别建立相应的神经网络模型,采用分期变异粒子群算法对各个分量的神经网络学习算法进行优化,最后将各个分量的预测值进行小波重构得到风电功率预测结果。江苏如东某风电场风电机组的实验结果证明预测精度较传统神经网络方法有较大提高,验证了所提出方法的有效性。 展开更多
关键词 小波分析 改进粒子群算法 神经网络优化 短期风电功率预测
下载PDF
基于VMD-SE-IPSO-BNN的超短期风电功率预测 被引量:9
19
作者 殷豪 董朕 孟安波 《电测与仪表》 北大核心 2018年第2期45-51,共7页
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO... 准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。 展开更多
关键词 短期风电功率预测 可变模式分解 样本熵 改进粒子群算法 贝叶斯神经网络 预测精度
下载PDF
基于动态集成LSSVR的超短期风电功率预测 被引量:3
20
作者 刘荣胜 彭敏放 +2 位作者 张海燕 万勋 沈美娥 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期79-86,共8页
针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu... 针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显. 展开更多
关键词 短期风电功率预测 最小二乘支持向量回归 动态集成 动态时间弯曲距离 数值天气预报
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部