风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成...风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。展开更多
文摘风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。