期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
1
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
下载PDF
基于CEEMDAN和BiLSTM-AM的超短期风速预测方法
2
作者 尹元亚 潘文虎 +3 位作者 赵文广 苏志朋 韩屹 吴红斌 《电测与仪表》 北大核心 2024年第9期77-84,共8页
精准的风速预测结果可以推进风电的高效消纳以及增强新型电力系统的安全稳定性。为进一步挖掘风速序列的非线性特征,提升风速预测精度,提出了一种基于CEEMDAN与BiLSTM-AM的超短期风速预测方法。针对风速的随机波动性,采用自适应噪声完... 精准的风速预测结果可以推进风电的高效消纳以及增强新型电力系统的安全稳定性。为进一步挖掘风速序列的非线性特征,提升风速预测精度,提出了一种基于CEEMDAN与BiLSTM-AM的超短期风速预测方法。针对风速的随机波动性,采用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)对风速序列进行分解,转化为一系列较为平稳的子模态,从而降低预测的复杂度;采用具有双向信息流结构的双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)挖掘各分量的变化规律,同时注意力机制(attention mechanism,AM)为神经网络的隐藏层状态分配相应权重,突出长时间序列中的关键信息,并利用贝叶斯优化对模型超参数进行寻优;将各分量的预测结果进行叠加作为最终结果。通过实际算例对比分析可知,该模型在单步与多步预测任务中均展现出良好的预测性能。 展开更多
关键词 短期风速预测 自适应噪声完备集合经验模态分解 双向长短时记忆 注意力机制 贝叶斯优化
下载PDF
一种改进组合神经网络的超短期风速预测方法研究 被引量:1
3
作者 邵宜祥 刘剑 +3 位作者 胡丽萍 过亮 方渊 李睿 《发电技术》 CSCD 2024年第2期323-330,共8页
超短期风速预测是保障风电机组桨距角前馈控制实施效果的关键,对提高风电机组环境适应性具有重要影响。为了提高预测精度,提出了一种改进组合神经网络的超短期风速预测方法。该方法选择适合时间序列预测且具有较强非线性学习能力的BP神... 超短期风速预测是保障风电机组桨距角前馈控制实施效果的关键,对提高风电机组环境适应性具有重要影响。为了提高预测精度,提出了一种改进组合神经网络的超短期风速预测方法。该方法选择适合时间序列预测且具有较强非线性学习能力的BP神经网络和长短期记忆(long short-term memory,LSTM)神经网络进行加权组合,以消除单个神经网络可能存在的较大误差;同时,为了提高组合效果,采用差分进化算法对组合权重进行优化。将该方法应用于某风场超短期风速预测中,通过与单神经网络预测、等权重组合神经网络预测的结果对比,验证了所提方法在提高预测精度上的有效性。 展开更多
关键词 风力发电 短期风速预测 BP神经网络 短期记忆(LSTM)神经网络 差分进化(DE)算法
下载PDF
基于VMD-ORELM-EC的超短期风速组合预测模型
4
作者 谢东良 郅伦海 +1 位作者 周康 胡峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第5期703-711,共9页
为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-... 为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-ORELM-EC。首先利用VMD将原始风速序列分解,并对每个分解子序列分别建立ORELM模型,将各子模型预测结果相加得到模型初步预测序列;然后将原始风速序列与初步预测序列相减得到模型的误差序列,并对误差序列进行VMD分解,对分解得到的误差子序列建立ORELM模型,从而得到误差预测序列;最后将模型的初步预测序列与误差预测序列组合得到最终的风速预测序列。利用该文提出的预测模型对北京测风塔实测的风速数据进行分析,结果表明模型可以有效挖掘风速序列特性,在超短期风速预测上具有较高的预测性能。 展开更多
关键词 短期风速预测 变分模态分解(VMD) 离群鲁棒极限学习机(ORELM) 误差修正(EC)
下载PDF
基于多特征数据与混合模型短期风速预测研究
5
作者 谭啸 邱攀 +1 位作者 李立 范玉文 《电工材料》 CAS 2024年第3期58-62,66,共6页
为提高短期风速预测的准确性与可靠性,提出了一种考虑多特征数据的新型混合预测模型。模型基于Stacking算法集成自适应模糊神经网络、数据分组预测模型、随机森林回归模型,同时结合时变滤波器改进的模态分解、自适应噪声模态分解完成数... 为提高短期风速预测的准确性与可靠性,提出了一种考虑多特征数据的新型混合预测模型。模型基于Stacking算法集成自适应模糊神经网络、数据分组预测模型、随机森林回归模型,同时结合时变滤波器改进的模态分解、自适应噪声模态分解完成数据深度二次分解。首先,对多特征原始数据进行数据预处理得到多维子序列矩阵,计算子序列排列熵以此重构子序列矩阵;然后,利用Stacking算法集成混合模型对不同频域范围内的时间序列矩阵完成预测。通过与经典模型对比,表明本文提出的考虑多特征数据的混合模型预测精度和模型稳定性有较大优势。 展开更多
关键词 短期风速预测 Stacking集成算法 深度学习网络 混合模型
下载PDF
基于时空库普曼自动编码器的风电场短期风速预测
6
作者 王轶琳 刘丰瑞 李宗锴 《吉林电力》 2024年第2期25-29,共5页
为了提升以新能源为主体的新型电力系统的风电消纳水平,需要对风速进行精确预测,关键在于提炼风电系统动态趋势与风速序列中潜在的物理结构。依据库普曼动力学理论与自编码器思想搭建物理约束时空神经网络,生成风电场非线性变量的线性... 为了提升以新能源为主体的新型电力系统的风电消纳水平,需要对风速进行精确预测,关键在于提炼风电系统动态趋势与风速序列中潜在的物理结构。依据库普曼动力学理论与自编码器思想搭建物理约束时空神经网络,生成风电场非线性变量的线性演化矩阵。首先,通过线性演化矩阵近似系统趋势,在预测过程中充分考虑前、后向动态。然后,设置双向相关预测机制与适配不同对象的代价函数,降低预测对序列的可逆性、平稳性要求。同时,对特征空间隐向量进行可视化,展现系统内特征区间依赖。最后,借助北票王子山风电场风速实测数据验证所提方法的有效性。结果表明:所提方法对于强随机、强波动的风速序列具有较高的预测精度,泛化能力强,可解释性优越。 展开更多
关键词 短期风速预测 新型电力系统 库普曼理论 时空神经网络 物理约束学习
下载PDF
基于遗传BP神经网络的短期风速预测模型 被引量:191
7
作者 王德明 王莉 张广明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期837-841,904,共6页
为了提高风电场短期风速预测精度,提出将遗传算法和反向传播(BP)神经网络相结合的预测模型.采用自相关性分析找出对预测值影响最大的几个历史时刻风速,以历史时刻的风速、温度、湿度和气压作为BP神经网络预测模型的输入变量;利用遗传算... 为了提高风电场短期风速预测精度,提出将遗传算法和反向传播(BP)神经网络相结合的预测模型.采用自相关性分析找出对预测值影响最大的几个历史时刻风速,以历史时刻的风速、温度、湿度和气压作为BP神经网络预测模型的输入变量;利用遗传算法的全局搜索能力获得BP神经网络优化的初始权值和阈值;采用优化后的BP神经网络分别建立1、2、3 h的短期风速预测模型.实验结果表明,该方法较BP神经网络具有预测精度高、收敛速度快的优点. 展开更多
关键词 风力发电 短期风速预测 BP神经网络 遗传算法
下载PDF
基于小波变换的风电场短期风速组合预测 被引量:63
8
作者 田中大 李树江 +1 位作者 王艳红 高宪文 《电工技术学报》 EI CSCD 北大核心 2015年第9期112-120,共9页
针对风电场短期风速的预测提出一种基于小波变换的组合预测方法。首先利用Mallat算法对短期风速时间序列进行db3小波三层分解与重构,得到短期风速时间序列的近似分量和细节分量。针对近似分量和细节分量的不同特性,对近似分量利用粒子... 针对风电场短期风速的预测提出一种基于小波变换的组合预测方法。首先利用Mallat算法对短期风速时间序列进行db3小波三层分解与重构,得到短期风速时间序列的近似分量和细节分量。针对近似分量和细节分量的不同特性,对近似分量利用粒子群算法优化的最小二乘支持向量机进行预测,对细节分量利用自回归求和滑动平均模型进行预测。最后各预测模型预测值组合叠加得到最终的短期风速预测值。仿真结果表明该方法具有较高的预测准确度。 展开更多
关键词 短期风速 小波变换 自回归求和滑动平均模型 最小二乘支持向量机 组合预测
下载PDF
优化遗传算法寻优的SVM在短期风速预测中的应用 被引量:59
9
作者 颜晓娟 龚仁喜 张千锋 《电力系统保护与控制》 EI CSCD 北大核心 2016年第9期38-42,共5页
针对遗传算法存在的早熟和收敛慢的问题,提出一种融合小生境算法、免疫算法的优化遗传算法。一方面通过疫苗因子引导初始种群的生成,使个体具有某些优秀基因,减少寻优时间,并随数据的更新,提出疫苗因子和参数寻优范围的自适应更新机制... 针对遗传算法存在的早熟和收敛慢的问题,提出一种融合小生境算法、免疫算法的优化遗传算法。一方面通过疫苗因子引导初始种群的生成,使个体具有某些优秀基因,减少寻优时间,并随数据的更新,提出疫苗因子和参数寻优范围的自适应更新机制。另一方面在种群的进化过程中,通过小生境遗传算法维护种群的多样性。实验结果表明,将基于优化遗传算法寻优的SVM应用到短期风速预测中是可行的,具有较高的预测精度和收敛速度。 展开更多
关键词 优化遗传算法 短期风速预测 SVM 参数寻优 自适应更新
下载PDF
时间序列与神经网络法相结合的短期风速预测 被引量:94
10
作者 蔡凯 谭伦农 +1 位作者 李春林 陶雪峰 《电网技术》 EI CSCD 北大核心 2008年第8期82-85,90,共5页
利用时间序列-神经网络法研究了短期风速预测。该方法用时间序列模型来选择神经网络的输入变量,选用多层反向传播(back propagation,BP)神经网络和广义回归神经网络(generalized regression neural network,GRNN)分别对采样时间间隔为10... 利用时间序列-神经网络法研究了短期风速预测。该方法用时间序列模型来选择神经网络的输入变量,选用多层反向传播(back propagation,BP)神经网络和广义回归神经网络(generalized regression neural network,GRNN)分别对采样时间间隔为10min、20min和30min的风速序列进行预测。结果表明,时间序列结合GRNN的方法精度更高,具有一定的实用价值。 展开更多
关键词 短期风速预测 风力发电 时间序列 人工神经网络
下载PDF
基于改进GMDH网络的风电场短期风速预测 被引量:19
11
作者 吴栋梁 王扬 +1 位作者 郭创新 杨健 《电力系统保护与控制》 EI CSCD 北大核心 2011年第2期88-93,111,共7页
基于GMDH神经网络和模糊逻辑理论,对风电场风速预测进行了深入研究,提出了一种改进GMDH神经网络方法。该方法在传统网络的基础上将神经元模糊化并引入反馈环,将GMDH网络的低维计算能力和模糊逻辑的高维推理能力结合起来用于预测。在进... 基于GMDH神经网络和模糊逻辑理论,对风电场风速预测进行了深入研究,提出了一种改进GMDH神经网络方法。该方法在传统网络的基础上将神经元模糊化并引入反馈环,将GMDH网络的低维计算能力和模糊逻辑的高维推理能力结合起来用于预测。在进行网络训练时,采用指数型能量函数作为目标误差函数,提高了网络收敛速度。通过与BP神经网络及传统GMDH网络的预测结果相比较,表明该改进方法能够有效地提高短期风速预测的精度。 展开更多
关键词 GMDH网络 模糊逻辑 反馈 短期风速预测
下载PDF
用实测风速校正的短期风速仿真研究 被引量:30
12
作者 王耀南 孙春顺 李欣然 《中国电机工程学报》 EI CSCD 北大核心 2008年第11期94-100,共7页
风速仿真是风力发电研究的重要手段之一。该文简述了风特征研究概况,建立了基于Kaimal风速功率谱的短期风速仿真模型;将仿真风速与实测风速时间序列做对比,发现仿真结果总体性态良好,但无法反映被仿真场址的特定风速变动规律。因此,进... 风速仿真是风力发电研究的重要手段之一。该文简述了风特征研究概况,建立了基于Kaimal风速功率谱的短期风速仿真模型;将仿真风速与实测风速时间序列做对比,发现仿真结果总体性态良好,但无法反映被仿真场址的特定风速变动规律。因此,进一步提出了用实测风速校正仿真风速的方法,校正后的仿真风速不仅总体性态良好,而且能很好地反映被仿真场址的特定风速变动规律。该文的短期风速仿真方法可以用于短期风速预测、风轮机动态仿真、风力发电控制与电能质量分析等风力发电仿真研究,也可以用于其它风工程、信号分析等领域的仿真研究。 展开更多
关键词 风力发电 短期风速 仿真 风速功率谱 Kaimal谱 谱模拟
下载PDF
基于相关向量机的短期风速预测模型 被引量:13
13
作者 李慧杰 刘亚南 +4 位作者 卫志农 李晓露 Kwok W Cheung 孙永辉 孙国强 《电力自动化设备》 EI CSCD 北大核心 2013年第10期28-32,共5页
通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函... 通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函数选择灵活等优点。仿真结果表明,与BP神经网络和支持向量机(SVM)模型相比,RVM模型预测精度更高。 展开更多
关键词 神经网络 支持向量机 相关向量机 相空间重构 短期风速预测 模型
下载PDF
一种基于EMD的短期风速多步预测方法 被引量:33
14
作者 刘兴杰 米增强 +1 位作者 杨奇逊 樊小伟 《电工技术学报》 EI CSCD 北大核心 2010年第4期165-170,共6页
针对风速时间序列的非线性和非平稳性,提出了一种基于经验模式分解(EMD)的短期风速多步预测新方法。该方法首先对风速时间序列进行EMD处理,将其分解为一系列相对平稳的分量,以减少不同特征信息之间的干涉;然后利用游程判定法,将波动程... 针对风速时间序列的非线性和非平稳性,提出了一种基于经验模式分解(EMD)的短期风速多步预测新方法。该方法首先对风速时间序列进行EMD处理,将其分解为一系列相对平稳的分量,以减少不同特征信息之间的干涉;然后利用游程判定法,将波动程度相近的分量重构为高-中-低频三个分量,使所得分量特征信息集中且预测分量大幅减少;之后针对三分量的特征分别建立相应的多步预测模型;最后将三分量的多步预测结果进行自适应叠加作为最终的预测风速。算例结果表明,运用本文方法使风速多步预测的精度得到了大幅提高,同时在风速波动剧烈时也能保证较好的预测效果。 展开更多
关键词 风电场 短期风速 多步预测 经验模式分解
下载PDF
基于ARIMA与ESN的短期风速混合预测模型 被引量:16
15
作者 田中大 李树江 +1 位作者 王艳红 高宪文 《太阳能学报》 EI CAS CSCD 北大核心 2016年第6期1603-1610,共8页
提出一种基于自回归求和滑动平均模型(autoregressive integrated moving average,ARIMA)与回声状态网络(echo state network,ESN)的短期风速预测模型。首先利用ARIMA模型对短期风速时间序列进行线性特征的预测,使得短期风速的残差仅包... 提出一种基于自回归求和滑动平均模型(autoregressive integrated moving average,ARIMA)与回声状态网络(echo state network,ESN)的短期风速预测模型。首先利用ARIMA模型对短期风速时间序列进行线性特征的预测,使得短期风速的残差仅包含非线性特征,然后利用ESN模型对非线性的残差序列进行预测,最后将ARIMA模型的短期风速线性预测值与ESN模型的短期风速非线性预测残差值进行相加得到最终的短期风速的预测值。单步与多步预测的仿真实验表明该混合预测模型具有更高的预测精度与更小的预测误差。 展开更多
关键词 短期风速 预测 自回归求和滑动平均模型 回声状态网络
下载PDF
基于混沌相空间重构理论的风电场短期风速预测 被引量:30
16
作者 吕涛 唐巍 所丽 《电力系统保护与控制》 EI CSCD 北大核心 2010年第21期113-117,共5页
风力发电具有波动性、间歇性和随机性的特点,大容量的风力发电接入,会对电力系统的安全、稳定运行带来严峻挑战,进行短期风速预测对并网风力发电系统的运行具有重要意义。根据风速具有混沌特性,采用相空间重构理论对短期风速进行预测。... 风力发电具有波动性、间歇性和随机性的特点,大容量的风力发电接入,会对电力系统的安全、稳定运行带来严峻挑战,进行短期风速预测对并网风力发电系统的运行具有重要意义。根据风速具有混沌特性,采用相空间重构理论对短期风速进行预测。由嵌入时间窗Γ和m、τ的关系,确定了m和τ的多组可行匹配,并找出一个最佳匹配进行相空间重构。在选取参考点时既考虑相点欧式距离又考虑其空间及时间上的相关性,有效克服'伪邻近点'的影响,提高了预测精度。预测模型采用了一阶局域预测模型和BP神经网络两种模型。算例分析结果验证了所提出方法的可行性和有效性。 展开更多
关键词 风速时间序列 短期风速预测 混沌特性 相空间重构 神经网络
下载PDF
基于谱聚类和优化极端学习机的超短期风速预测 被引量:32
17
作者 王辉 刘达 王继龙 《电网技术》 EI CSCD 北大核心 2015年第5期1307-1314,共8页
较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极... 较高精度的超短期风速预测是并网运行风电场风电功率预测预报系统建立和运行的必要前提及保证。由于风速影响因素众多,具有较大的波动性和随机性,并具有高度的自相关性,给传统的风速预测方法带来了极大的挑战。提出一种基于谱聚类和极端学习机的超短期风速预测方法。该方法首先利用小波变换和主成分分析对风速数据进行去噪和降维处理,剔除数据的不规则波动,有效降低数据维度;然后分别应用谱聚类对小波变换后的各分解序列进行聚类分析,减少训练样本空间,提高样本有效性,降低计算复杂度;再应用极端学习机对各分解序列分别进行训练,同时通过遗传算法对极端学习机输入权值、偏置等参数进行优化,确保各分解序列输出最佳预测模型;最后将各分解序列预测结果相加得到最终预测结果。以某风电场实际数据进行的建模结果表明该模型有效实现了对风速的超短期、多步预测,采用的方法合理有效。 展开更多
关键词 短期风速预测 谱聚类 极端学习机
下载PDF
基于组合预测方法的风电场短期风速预测 被引量:27
18
作者 彭怀午 刘方锐 杨晓峰 《太阳能学报》 EI CAS CSCD 北大核心 2011年第4期543-547,共5页
基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最... 基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最高,而组合预测中3种方法组合的预测精度最高,并且组合预测精度均高于单一预测方法的精度。同时发现,当单一模型预测误差之间存在较强的负相关关系时,组合预测精度提高明显;而当单一模型预测误差之间存在较强的正相关关系时,则组合预测精度改进有限。 展开更多
关键词 短期风速预测 持续法 人工神经网络 支持向量机 组合预测
下载PDF
风电场超短期风速预测的相空间优化邻域局域法 被引量:9
19
作者 王扬 张金江 +3 位作者 温柏坚 郭创新 曹一家 吴栋梁 《电力系统自动化》 EI CSCD 北大核心 2011年第24期39-43,58,共5页
基于相空间重构技术和局域预测法,提出一种风电场超短期风速预测的新方法。该方法通过优化的相空间邻域寻找预测状态点在相空间中的邻域点,并建立支持向量回归(SVR)模型。通过考察伪近邻点的比重来选取合适的邻域半径,保证了邻域点与预... 基于相空间重构技术和局域预测法,提出一种风电场超短期风速预测的新方法。该方法通过优化的相空间邻域寻找预测状态点在相空间中的邻域点,并建立支持向量回归(SVR)模型。通过考察伪近邻点的比重来选取合适的邻域半径,保证了邻域点与预测状态点的高度相似性,而SVR模型则具有很强的高维非线性拟合能力。实例分析表明,该方法与其他方法相比具有较好的超短期风速预测效果。 展开更多
关键词 风力发电 短期风速预测 局域预测法 支持向量回归(SVR) 相空间重构 伪近邻点
下载PDF
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究 被引量:13
20
作者 杨磊 黄元生 +2 位作者 张向荣 董玉琳 高冲 《电力系统保护与控制》 EI CSCD 北大核心 2020年第10期81-90,共10页
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算... 准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。 展开更多
关键词 短期风速预测 集合经验模态分解 套索算法 广义回归神经网络 短期记忆 遗传算法
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部