为建立城市污水主流厌氧氨氧化脱氮系统并研究其温室气体N2O排放特征,采用低氧SBBR处理模拟生活污水并获得了94.1%的TN去除率。连续试验及批量试验结果表明,高效脱氮是部分硝化-短程反硝化耦合厌氧氨氧化共同耦合作用结果。典型周期内N2...为建立城市污水主流厌氧氨氧化脱氮系统并研究其温室气体N2O排放特征,采用低氧SBBR处理模拟生活污水并获得了94.1%的TN去除率。连续试验及批量试验结果表明,高效脱氮是部分硝化-短程反硝化耦合厌氧氨氧化共同耦合作用结果。典型周期内N2O排放呈快速上升、波动式快速下降、缓慢消失的规律,其中第75 min N2O排放速率最高,达6.7μg/(L·min),推测是由于低氧硝化过程中羟胺氧化作用所致。高通量测序揭示了体系内同时存在着厌氧氨氧化、好氧异养、反硝化、硝化等功能菌属,与系统脱氮和N2O产生密切相关。展开更多
A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could r...A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1% of the influent COD at a volumetric loading rate of 6.8 kg COD·m-3·d-1. Nitritation–denitritation was responsible for removing 99.8% of NH+4-N and 25% of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization(FISH) analysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria,with its kinetic parameters determined from batch experiments.展开更多
文摘为建立城市污水主流厌氧氨氧化脱氮系统并研究其温室气体N2O排放特征,采用低氧SBBR处理模拟生活污水并获得了94.1%的TN去除率。连续试验及批量试验结果表明,高效脱氮是部分硝化-短程反硝化耦合厌氧氨氧化共同耦合作用结果。典型周期内N2O排放呈快速上升、波动式快速下降、缓慢消失的规律,其中第75 min N2O排放速率最高,达6.7μg/(L·min),推测是由于低氧硝化过程中羟胺氧化作用所致。高通量测序揭示了体系内同时存在着厌氧氨氧化、好氧异养、反硝化、硝化等功能菌属,与系统脱氮和N2O产生密切相关。
基金Supported by the National Natural Science Foundation of China(51168028,51168027)Science and Technique Foundation Project for Youth of Gansu Province(1107RJYA279)
文摘A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1% of the influent COD at a volumetric loading rate of 6.8 kg COD·m-3·d-1. Nitritation–denitritation was responsible for removing 99.8% of NH+4-N and 25% of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization(FISH) analysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria,with its kinetic parameters determined from batch experiments.