期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
石墨相氮化碳的制备及光催化降解罗丹明B 被引量:9
1
作者 党聪哲 李一兵 赵旭 《环境工程学报》 CAS CSCD 北大核心 2018年第2期427-433,共7页
研究了不同前驱体组合对制备光催化剂的影响,通过X-射线衍射分析、红外光谱分析、氮气吸附-脱附等温曲线、光学性质分析和紫外-可见漫反射等方法,对光催化剂性质进行表征。结果表明:以质量比为1∶1的C_2H_4N_4/CON_2H_4组合前驱体制备... 研究了不同前驱体组合对制备光催化剂的影响,通过X-射线衍射分析、红外光谱分析、氮气吸附-脱附等温曲线、光学性质分析和紫外-可见漫反射等方法,对光催化剂性质进行表征。结果表明:以质量比为1∶1的C_2H_4N_4/CON_2H_4组合前驱体制备的光催化剂表现出结晶度好、光生载流子分离效率高、催化剂性能稳定等特点;C_2H_4N_4/CON_2H_4组合前驱体制备的g-C_3N_4光催化反应180 min后对RhB的去除率最高;通过添加异丙醇、苯醌和EDTA对光催化过程中产生的活性物质进行分析发现,超氧自由基和空穴是降解RhB的主要活性物质。 展开更多
关键词 光催化剂 聚合半导体 石墨态氮化碳
原文传递
一步热聚合法制备Cu_(2)O/CuO-g-C_(3)N_(4)吸附剂及其对甲基橙吸附的性能 被引量:2
2
作者 熊波 黎泰华 +2 位作者 周武平 刘长宇 徐晓龙 《应用化学》 CAS CSCD 北大核心 2023年第3期420-429,共10页
用一步热聚合法制备了一种铜改性的石墨氮化碳吸附剂,并研究了其对甲基橙的吸附性能。以氧化亚铜、双氰胺为前驱体,以氯化胺作为气体模板,在高温下引发聚合获得了铜改性的石墨氮化碳吸附剂(Cu_(2)O/CuO-g-C_(3)N_(4))。采用扫描电子显微... 用一步热聚合法制备了一种铜改性的石墨氮化碳吸附剂,并研究了其对甲基橙的吸附性能。以氧化亚铜、双氰胺为前驱体,以氯化胺作为气体模板,在高温下引发聚合获得了铜改性的石墨氮化碳吸附剂(Cu_(2)O/CuO-g-C_(3)N_(4))。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)及全自动比表面及孔隙度分析(BET)等对所制备吸附剂的组成和结构进行了表征,结果表明,该吸附剂由Cu、C、N和O共4种元素组成具有介孔结构的层状材料。引入铜氧化物以后,有效地扩展了g-C_(3)N_(4)的π共轭体系,有利于通过π-π作用吸附带有苯环结构的染料;Cu_(2)O/CuO-g-C_(3)N_(4)吸附剂具有多种孔径的介孔结构增大了其比表面积,为染料的吸附提供了足够的活性位点。通过优化吸附剂的制备条件、投加量、染料浓度、吸附时间、搅拌转速和pH等参数后,获得在最优条件下对甲基橙溶液的吸附率仅需25 min即可达到96.11%。进一步地,在常温常压下,通过动力学分析,该吸附过程更倾向于准一阶动力学模型;通过吸附等温实验验证,该吸附等温线属于Langmuir吸附等温线,在整个吸附实验中,最大平衡吸附容量为241.25 mg/g。 展开更多
关键词 铜掺杂基吸附剂 甲基橙 热聚合 石墨态氮化碳
下载PDF
In situ fabrication of Bi_(2)Se_(3)/g-C_(3)N_(4)S-scheme photocatalyst with improved photocatalytic activity 被引量:9
3
作者 Rongan He Sijiao Ou +2 位作者 Yexuan Liu Yu Liu Difa Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期370-378,共9页
Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination lim... Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity. 展开更多
关键词 S-scheme heterojunction Bismuth selenide Graphitic carbon nitride In situ fabrication PHOTOCATALYSIS
下载PDF
An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate 被引量:2
4
作者 Yu Zhang Ling Zhang +4 位作者 Di Zeng Wenjing Wang Juxue Wang Weimin Wang Wenzhong Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第10期2690-2698,共9页
Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxyge... Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2). 展开更多
关键词 PHOTOCATALYSIS Hydrogen peroxide production Graphitic carbon nitride Singlet oxygen Sodium phosphate
下载PDF
g-C3N4/Cu2O/CF电极制备及在微生物燃料电池中的应用 被引量:3
5
作者 张茗迪 贾玉红 +2 位作者 尤宏 付亮 李维国 《环境科学学报》 CAS CSCD 北大核心 2019年第9期2945-2952,共8页
为了提高微生物燃料电池的产电性能,采用电沉积法将石墨态氮化碳(g-C3N4)与氧化亚铜(Cu2O)负载到碳毡(Carbon felt,CF)表面,制得g-C3N4/Cu2O/CF光电极用于构建微生物燃料电池.通过场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射... 为了提高微生物燃料电池的产电性能,采用电沉积法将石墨态氮化碳(g-C3N4)与氧化亚铜(Cu2O)负载到碳毡(Carbon felt,CF)表面,制得g-C3N4/Cu2O/CF光电极用于构建微生物燃料电池.通过场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)、光生电流曲线(I-T)、线性扫描伏安曲线(LSV)对光电阴极进行光电性能测试,并在白光发光二极管(LED)辐照下研究了以Cu2O/CF、g-C3N4/Cu2O/CF为阴极光催化微生物燃料电池的产电性能.结果表明,g-C3N4/Cu2O/CF电极中g-C3N4分布在Cu2O之间;g-C3N4/Cu2O/CF光电极能提高光利用率,与Cu2O/CF光电极相比,光电流密度达到2700 mA·m^-2,增长幅度达到125%;与Cu2O/CF阴极微生物燃料电池相比,g-C3N4/Cu2O/CF阴极微生物燃料电池具有更优的产电能力,在白光LED辐照下最大功率密度和光电流密度达到110.7 mW·m^-2和1102 mA·m^-2,增长幅度达到16%和27%. 展开更多
关键词 石墨态氮化碳 氧化亚铜 微生物燃料电池 光催化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部