利用 MOCVD系统在 Al2 O3衬底上生长 In Ga N材料和 In Ga N/ Ga N量子阱结构材料。研究发现 ,In Ga N材料中 In组份几乎不受 TMG与 TMI的流量比的影响 ,而只与生长温度有关 ,生长温度由 80 0℃降低到 74 0℃ ,In组份的从 0 .2 2增加到 ...利用 MOCVD系统在 Al2 O3衬底上生长 In Ga N材料和 In Ga N/ Ga N量子阱结构材料。研究发现 ,In Ga N材料中 In组份几乎不受 TMG与 TMI的流量比的影响 ,而只与生长温度有关 ,生长温度由 80 0℃降低到 74 0℃ ,In组份的从 0 .2 2增加到 0 .4 5 ;室温 In Ga N光致发光光谱 (PL)峰全半高宽 (FWH M)为 15 .5 nm;In Ga N/ Ga N量子阱区 In Ga N的厚度 2 nm,但光荧光的强度与 10 0 nm厚 In Ga N的体材料相当。展开更多
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110...分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.展开更多
文摘利用 MOCVD系统在 Al2 O3衬底上生长 In Ga N材料和 In Ga N/ Ga N量子阱结构材料。研究发现 ,In Ga N材料中 In组份几乎不受 TMG与 TMI的流量比的影响 ,而只与生长温度有关 ,生长温度由 80 0℃降低到 74 0℃ ,In组份的从 0 .2 2增加到 0 .4 5 ;室温 In Ga N光致发光光谱 (PL)峰全半高宽 (FWH M)为 15 .5 nm;In Ga N/ Ga N量子阱区 In Ga N的厚度 2 nm,但光荧光的强度与 10 0 nm厚 In Ga N的体材料相当。
文摘分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小.