End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio...End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.展开更多
Metam sodium (MS; sodium N-methyl dithiocarbamate) has emerged as a promising soil fumigant in the US to replace methyl bromide (MeBr). Metam potassium (MK; potassium N-methyl dithiocarbamate) and MS break down ...Metam sodium (MS; sodium N-methyl dithiocarbamate) has emerged as a promising soil fumigant in the US to replace methyl bromide (MeBr). Metam potassium (MK; potassium N-methyl dithiocarbamate) and MS break down into the volatile gas methyl isothiocyanate (MITC) to control soil borne pests. Many studies have focused on MS, but MK has not been studied as thoroughly. The objective of this research was to determine the effect of increasing organic matter (OM) treatments and soil texture to minimize the off-gassing of MS and MK. Bench-scale soil column studies were performed to simulate organic matter treatments that may decrease the volatilization loss of MITC. Incorporation depth of OM simulated surface tillage (0-15 cm) practices. Soil was packed in steel columns and MS or MK was applied at a depth of 15 cm and MITC volatilization was measured using gas chromatography/mass spectroscopy. Volatilization of MITC behaved similarly for MS and MK with MITC movement impacted by soil texture. MITC volatilization was lower from a sandy clay loam than a sandy soil. Surface incorporation of OM did not significantly decrease MITC volatilization. These results suggest that soil texture is the dominant factor reducing MITC off-gassing and prolonging the time needed to control soil borne pests.展开更多
Various amino acid esters were reacted with different isothiocyanates in alkaline Al2O3 at room temperature for 1 h affording thiohydantoins in moderate to excellent yields.
基金Supported by PetroChina Company Limited(2020 B-2711)。
文摘End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.
文摘Metam sodium (MS; sodium N-methyl dithiocarbamate) has emerged as a promising soil fumigant in the US to replace methyl bromide (MeBr). Metam potassium (MK; potassium N-methyl dithiocarbamate) and MS break down into the volatile gas methyl isothiocyanate (MITC) to control soil borne pests. Many studies have focused on MS, but MK has not been studied as thoroughly. The objective of this research was to determine the effect of increasing organic matter (OM) treatments and soil texture to minimize the off-gassing of MS and MK. Bench-scale soil column studies were performed to simulate organic matter treatments that may decrease the volatilization loss of MITC. Incorporation depth of OM simulated surface tillage (0-15 cm) practices. Soil was packed in steel columns and MS or MK was applied at a depth of 15 cm and MITC volatilization was measured using gas chromatography/mass spectroscopy. Volatilization of MITC behaved similarly for MS and MK with MITC movement impacted by soil texture. MITC volatilization was lower from a sandy clay loam than a sandy soil. Surface incorporation of OM did not significantly decrease MITC volatilization. These results suggest that soil texture is the dominant factor reducing MITC off-gassing and prolonging the time needed to control soil borne pests.
基金National Natural Science Foundation of China(Grant No.20972005)
文摘Various amino acid esters were reacted with different isothiocyanates in alkaline Al2O3 at room temperature for 1 h affording thiohydantoins in moderate to excellent yields.