A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode tow...A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.展开更多
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mec...Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.展开更多
文摘A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y405496) the State Key Development Program for Basic Research of China (2007CB216409)
文摘Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.