Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this pl...Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.展开更多
The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neu...The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.展开更多
A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. Th...A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.展开更多
A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared w...A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared with the carbon-bridged analogue indacenodithiophene (IDT). Owing to the stronger electron-donating capability of CO5 than IDT, CO5-based donor and acceptor materials show narrower bandgaps. A donor-acceptor (D-A) copolymer donor (PCO5TPD) and an A-D-A nonfullerene acceptor (COSIC) demonstrated higher performance than IDT-based counterparts, PIDTTPD and IDTIC, respec-tively. The better performance of CO5-based materials results from their stronger light-harvesting capability and higher charge-carrier mobilities.展开更多
In order to measure the axial flowing velocity of carbon particle suspension with particle diameter of tens of micrometers, the photoacoustic Doppler(PAD) frequency shift is calculated based on a series of individual ...In order to measure the axial flowing velocity of carbon particle suspension with particle diameter of tens of micrometers, the photoacoustic Doppler(PAD) frequency shift is calculated based on a series of individual A scans using an autocorrelation method. A 532 nm pulsed laser with repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused piezoelectric(PZT) ultrasound transducer with central frequency of 5 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by the Hilbert transformation from time-domain photoacoustic signal, and then it is autocorrelated to calculate the Doppler frequency shift. The photoacoustic Doppler frequency shift is calculated by averaging the autocorrelation results of some individual A scans. The advantage of the autocorrelation method is that the time delay in autocorrelation can be defined by user, and the requirement of high pulse repetition rate is avoided. The feasibility of the proposed autocorrelation method is preliminarily demonstrated by quantifying the motion of a carbon particle suspension with flow velocity from 5 mm/s to 60 mm/s. The experimental results show that there is an approximately linear relation between the autocorrelation result and the setting velocity.展开更多
To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation assoc...To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation associated with gasification performance.In this research we investigated the influence of O_2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal,and the sulphur transformation mechanism was also discussed.Experiments were performed in a circulating fluidized bed gasifier with O_2/C molar ratio ranging from 0.39 to 0.78 mol/mol.The results showed that increasing the O_2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65%to 91.92%,and increase sulphur release ratio from 29.66%to63.11%.The increase of O_2/C molar ratio favors the formation of H_2S,and also favors the retained sulphur transforming to more stable forms.Due to the reducing conditions of coal gasification,H_2S is the main form of the released sulphur,which could be formed by decomposition of pyrite and by secondary reactions.Bottom char shows lower sulphur content than fly ash,and mainly exist as sulphates.X-ray photoelectron spectroscopy(XPS)measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char,and the change is more obvious for bottom char.During CFB gasification process,bigger char particles circulate in the system and have longer residence time for further reaction,which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.展开更多
We have developed a process for chemical purification of carbon nanotubes for solution-processable thin-film transistors (TFTs) having high mobility. Films of the purified carbon nanotubes fabricated by simple drop ...We have developed a process for chemical purification of carbon nanotubes for solution-processable thin-film transistors (TFTs) having high mobility. Films of the purified carbon nanotubes fabricated by simple drop coating showed carrier mobilities as high as 164 cm2V-1s -1 normalized transconductances of 0.78 Sm-1 and on/off current ratios of 10^6. Such high performance requires the preparation of a suspension of micrometer-long and highly purified semiconducting single-walled carbon nanotubes (SWCNTs). Our purification process includes length and electronic-type selective trapping of SWCNTs using recycling gel filtration with a mixture of surfactants. The results provide an important milestone toward printed high-speed and large-area electronics with roll-to-roll and ink-jet device fabrication.展开更多
基金Supported by the Intensification of Research in Priority Areas Project (IRPA)Ministry of Science, Technology and Innovation,Malaysia (No.09-02-03-0101-EA0001).
文摘Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.
文摘The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202,61174118)+1 种基金the National Science Fund for Outstanding Young Scholars(61222303)Shanghai Leading Academic Discipline Project(B504)
文摘A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.
基金supported by the National Natural Science Foundation of China (U1401244, 21374025, 21372053, 21572041, and 51503050)the National Natural Science Foundation of China (51673218) for financial support+2 种基金the National Key Research and Development Program of China (2017YFA0206600)the State Key Laboratory of Luminescent Materials and Devices (2016-skllmd-05)the Youth Association for Promoting Innovation (CAS)
文摘A carbon-oxygen-bridged ladder-type donor unit (CO5) was invented and prepared via an "intramolecu- lar demethanolization cyclization" approach. Its single crystal structure indicates enhanced planarity compared with the carbon-bridged analogue indacenodithiophene (IDT). Owing to the stronger electron-donating capability of CO5 than IDT, CO5-based donor and acceptor materials show narrower bandgaps. A donor-acceptor (D-A) copolymer donor (PCO5TPD) and an A-D-A nonfullerene acceptor (COSIC) demonstrated higher performance than IDT-based counterparts, PIDTTPD and IDTIC, respec-tively. The better performance of CO5-based materials results from their stronger light-harvesting capability and higher charge-carrier mobilities.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U1204612)Natural Science Foundation of He’nan Educational Committee(No.13A416180)
文摘In order to measure the axial flowing velocity of carbon particle suspension with particle diameter of tens of micrometers, the photoacoustic Doppler(PAD) frequency shift is calculated based on a series of individual A scans using an autocorrelation method. A 532 nm pulsed laser with repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused piezoelectric(PZT) ultrasound transducer with central frequency of 5 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by the Hilbert transformation from time-domain photoacoustic signal, and then it is autocorrelated to calculate the Doppler frequency shift. The photoacoustic Doppler frequency shift is calculated by averaging the autocorrelation results of some individual A scans. The advantage of the autocorrelation method is that the time delay in autocorrelation can be defined by user, and the requirement of high pulse repetition rate is avoided. The feasibility of the proposed autocorrelation method is preliminarily demonstrated by quantifying the motion of a carbon particle suspension with flow velocity from 5 mm/s to 60 mm/s. The experimental results show that there is an approximately linear relation between the autocorrelation result and the setting velocity.
基金supported by the National Natural Science Foundation of China(No.21306193)the International Science&Technology Cooperation Program of China(No.2014DFG61680)
文摘To promote the utilization efficiency of coal resources,and to assist with the control of sulphur during gasification and/or downstream processes,it is essential to gain basic knowledge of sulphur transformation associated with gasification performance.In this research we investigated the influence of O_2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal,and the sulphur transformation mechanism was also discussed.Experiments were performed in a circulating fluidized bed gasifier with O_2/C molar ratio ranging from 0.39 to 0.78 mol/mol.The results showed that increasing the O_2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65%to 91.92%,and increase sulphur release ratio from 29.66%to63.11%.The increase of O_2/C molar ratio favors the formation of H_2S,and also favors the retained sulphur transforming to more stable forms.Due to the reducing conditions of coal gasification,H_2S is the main form of the released sulphur,which could be formed by decomposition of pyrite and by secondary reactions.Bottom char shows lower sulphur content than fly ash,and mainly exist as sulphates.X-ray photoelectron spectroscopy(XPS)measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char,and the change is more obvious for bottom char.During CFB gasification process,bigger char particles circulate in the system and have longer residence time for further reaction,which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.
文摘We have developed a process for chemical purification of carbon nanotubes for solution-processable thin-film transistors (TFTs) having high mobility. Films of the purified carbon nanotubes fabricated by simple drop coating showed carrier mobilities as high as 164 cm2V-1s -1 normalized transconductances of 0.78 Sm-1 and on/off current ratios of 10^6. Such high performance requires the preparation of a suspension of micrometer-long and highly purified semiconducting single-walled carbon nanotubes (SWCNTs). Our purification process includes length and electronic-type selective trapping of SWCNTs using recycling gel filtration with a mixture of surfactants. The results provide an important milestone toward printed high-speed and large-area electronics with roll-to-roll and ink-jet device fabrication.