Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differenti...This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.展开更多
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend...The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.展开更多
A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation ...A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.展开更多
Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein...Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein,cubic poly(ethylene glycol)(PEG)-modified mesoporous amorphous iron oxide(AFe)nanoparticles(AFe-PEG)have been successfully prepared as p H-stimulated drug carriers,which can combine doxorubicin(DOX)with a high loading capacity of 948 mg/g,forming a novel multifunctional AFe-PEG/DOX nanoparticulate DDS.In an acidic microenvironment,the AFe-PEG/DOX nanoparticles will not only release DOX efficiently,but also release Fe ions to catalyze the transformation of H2O2 to·OH,acting as fenton reagents.In vitro experimental results proved that the AFe-PEG/DOX nanoparticles can achieve combination of chemotherapeutic(CTT)and chemodynamic therapeutic(CDT)effects on Hela tumor cells.Furthermore,the intrinsic magnetism of AFePEG/DOX makes its cellular internalization efficiency be improved under an external magnetic field.Therefore,this work develops a new and promising magnetically targeted delivery and dual CTT/CDT therapeutic nano-medicine platform based on amorphous iron oxide.展开更多
The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activit...The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.展开更多
The pion and tensor vacuum susceptibilities are calculated in the framework of the renormalizable DysonSchwinger equations. A comparison with the results of other nonperturbative QCD approaches is given.
Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with gl...Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.展开更多
The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplec...The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplectic method, as a global symplectic integrator that can simultaneously solve both the equations of motion and the variational equations, is used to calculate fast Lyapunov indicators. In this way, dynamical structures are described, and parameter domains for causing chaos are found.展开更多
We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime(o...We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime(or dS/AdS spacetime),where the electromagnetic field has a sign factor(and thus is discountinuous)at the light cone.This problem is intuitively and clearly shown by the Penrose diagrams,from which one may find the remedy without too much difficulty.We use the Minkowski and dS spacetimes together to cover the compactified space,which in fact leads to the doubled conformal compactification.On this doubled conformal compactification,we obtain the globally well-defined electrodynamics.展开更多
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
文摘This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.
文摘The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.
基金Project(51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program("973" Program)of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups,National Natural Science Foundation of China
文摘A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.
基金supported by the National Natural Science Foundation of China(No.51473152 and No.51573174)Scientific Research Foundation for Young Talents from Fujian Provincial Department of Education(No.JT180494)Scientific Research Platform Construction Project from Fujian Provincial Department of Science and Technology(No.2018H2002)。
文摘Smart nanoparticles that respond to pathophysiological parameters,such as p H,GSH,and H2O2,have been developed with the huge and urgent demand for the high-efficient drug delivery systems(DDS)for cancer therapy.Herein,cubic poly(ethylene glycol)(PEG)-modified mesoporous amorphous iron oxide(AFe)nanoparticles(AFe-PEG)have been successfully prepared as p H-stimulated drug carriers,which can combine doxorubicin(DOX)with a high loading capacity of 948 mg/g,forming a novel multifunctional AFe-PEG/DOX nanoparticulate DDS.In an acidic microenvironment,the AFe-PEG/DOX nanoparticles will not only release DOX efficiently,but also release Fe ions to catalyze the transformation of H2O2 to·OH,acting as fenton reagents.In vitro experimental results proved that the AFe-PEG/DOX nanoparticles can achieve combination of chemotherapeutic(CTT)and chemodynamic therapeutic(CDT)effects on Hela tumor cells.Furthermore,the intrinsic magnetism of AFePEG/DOX makes its cellular internalization efficiency be improved under an external magnetic field.Therefore,this work develops a new and promising magnetically targeted delivery and dual CTT/CDT therapeutic nano-medicine platform based on amorphous iron oxide.
基金Supported by Tianjin Natural Science Foundation (No033603611)
文摘The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.
文摘The pion and tensor vacuum susceptibilities are calculated in the framework of the renormalizable DysonSchwinger equations. A comparison with the results of other nonperturbative QCD approaches is given.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0704003)the Basic Research Program of Shenzhen(JCYJ20180305163452667,JCYJ20180507182413022,and JCYJ20170412111100742)+3 种基金the National Natural Science Foundation of China(81903564,31771036,51703132,and 21874119)the Guangdong Provincial Natural Science Foundation of Major Basic Research and Cultivation Project(2018B030308003)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161032)We thank Instrumental Analysis Center of Shenzhen University(Lihu Campus).
文摘Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11173012 and 11178002
文摘The linear stability of equilibria of charged particles moving near a compact object with a dipole magnetic field and a pseudo-Newtonian potential is analyzed detalledly. An optimal fourth-order force gradient symplectic method, as a global symplectic integrator that can simultaneously solve both the equations of motion and the variational equations, is used to calculate fast Lyapunov indicators. In this way, dynamical structures are described, and parameter domains for causing chaos are found.
基金supported by the National Natural Science Foundation of China(Grant Nos.11075206 and 11175245)
文摘We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime(or dS/AdS spacetime),where the electromagnetic field has a sign factor(and thus is discountinuous)at the light cone.This problem is intuitively and clearly shown by the Penrose diagrams,from which one may find the remedy without too much difficulty.We use the Minkowski and dS spacetimes together to cover the compactified space,which in fact leads to the doubled conformal compactification.On this doubled conformal compactification,we obtain the globally well-defined electrodynamics.