企业品牌舆论监控、网络敏感社区及重点社区识别是当前企业舆情监控的重点工作。作为网络社会的子集,不同的网络社区(社交媒体中联系密切的群体)由于社区网络结构的不同、社区成员情感倾向的不同,导致企业负面新闻在其中的传播会表现出...企业品牌舆论监控、网络敏感社区及重点社区识别是当前企业舆情监控的重点工作。作为网络社会的子集,不同的网络社区(社交媒体中联系密切的群体)由于社区网络结构的不同、社区成员情感倾向的不同,导致企业负面新闻在其中的传播会表现出来不同的特质。从网络社区的角度出发,研究不同社区情感倾向及社区网络结构下,企业负面新闻在其中产生的影响;进而提出了基于文本挖掘及情感分析的社区负面舆论传播预测模型。根据心理学测量视角Profile of Mood States(POMS)测度社区成员情感倾向(Tendency),以事件划分时间窗口;通过对连续六个月抓取的网络数据使用文本挖掘相关算法分析每个事件窗口内社区成员六种情感的分布(愤怒、紧张、失望等);在情感分布及网络结构上进行聚类,识别不同类别的情感倾向的网络社区;在些基础上建立社区情感倾向及舆论传播预测模型。测试结果表明:该模型在对网络社区情感倾向的识别及舆论传播倾向预测方面有较高的准确度,在舆论传播监控、敏感社区及重点社区识别等方面有一定的指导意义。展开更多
Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization m...Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.展开更多
Community structure has an important influence on the structural and dynamic characteristics of the complex systems.So it has attracted a large number of researchers.However,due to its complexity,the mechanism of acti...Community structure has an important influence on the structural and dynamic characteristics of the complex systems.So it has attracted a large number of researchers.However,due to its complexity,the mechanism of action of the community structure is still not clear to this day.In this paper,some features of the community structure have been discussed.And a constraint model of the community has been deduced.This model is effective to identify the communities.And especially,it is effective to identify the overlapping nodes between the communities.Then a community detection algorithm,which has linear time complexity,is proposed based on this constraint model,a proposed node similarity model and the Modularity Q.Through some experiments on a series of real-world and synthetic networks,the high performances of the algorithm and the constraint model have been illustrated.展开更多
文摘企业品牌舆论监控、网络敏感社区及重点社区识别是当前企业舆情监控的重点工作。作为网络社会的子集,不同的网络社区(社交媒体中联系密切的群体)由于社区网络结构的不同、社区成员情感倾向的不同,导致企业负面新闻在其中的传播会表现出来不同的特质。从网络社区的角度出发,研究不同社区情感倾向及社区网络结构下,企业负面新闻在其中产生的影响;进而提出了基于文本挖掘及情感分析的社区负面舆论传播预测模型。根据心理学测量视角Profile of Mood States(POMS)测度社区成员情感倾向(Tendency),以事件划分时间窗口;通过对连续六个月抓取的网络数据使用文本挖掘相关算法分析每个事件窗口内社区成员六种情感的分布(愤怒、紧张、失望等);在情感分布及网络结构上进行聚类,识别不同类别的情感倾向的网络社区;在些基础上建立社区情感倾向及舆论传播预测模型。测试结果表明:该模型在对网络社区情感倾向的识别及舆论传播倾向预测方面有较高的准确度,在舆论传播监控、敏感社区及重点社区识别等方面有一定的指导意义。
基金supported by China 973 Program (2014CB340600)NSF(60903175,61272405, 61272033,and 61272451)University Innovation Foundation(2013TS102 and 2013TS106)
文摘Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.
基金Supported by the National Natural Science Foundation of China under Grant No. 60974090the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 200806110016
文摘Community structure has an important influence on the structural and dynamic characteristics of the complex systems.So it has attracted a large number of researchers.However,due to its complexity,the mechanism of action of the community structure is still not clear to this day.In this paper,some features of the community structure have been discussed.And a constraint model of the community has been deduced.This model is effective to identify the communities.And especially,it is effective to identify the overlapping nodes between the communities.Then a community detection algorithm,which has linear time complexity,is proposed based on this constraint model,a proposed node similarity model and the Modularity Q.Through some experiments on a series of real-world and synthetic networks,the high performances of the algorithm and the constraint model have been illustrated.