A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water...A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.展开更多
Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimati...Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.展开更多
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2003AA209030) High Technology Research and Development Program of Jiangsu Province (No. BG2004320) the National Natural Science Foundation
文摘A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.
基金Project supported by the Commission of Science, Technology and Industry for National Defence, China (No.Y97# 14-6-2).
文摘Since remote sensing can provide information on the actual status of an agricultural crop, the integration between remote sensing data and crop growth simulation models has become an important trend for yield estimation and prediction.The main objective of this research was to combine a rice growth simulation model with remote sensing data to estimate rice grain yield for different growing seasons leading to an assessment of rice yield at regional levels. Integration between NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data and the rice growth simulation model ORYZA1 to develop a new software, which was named as Rice-SRS Model, resulted in accurate estimates for rice yield in Shaoxing, China, with an estimation error reduced to 1.03% and 0.79% over-estimation and 0.79% under-estimation for early, single and late season rice, respectively. Selecting suitable dates for remote sensing images was an important factor which could influence estimation accuracy. Thus, given the different growing periods for each rice season, four images were needed for early and late rice, while five images were preferable for single season rice.Estimating rice yield using two or three images was possible, however, if images were obtained during the panicle initiation and heading stages.