现代工业制氢技术中,甲烷重整制氢具有反应物丰富、可利用性高等独特优势,尤其甲烷干重整(Dry Reforming of Methane,DRM)技术,以甲烷和二氧化碳为原料,兼具环境和经济效益,而催化剂积碳是影响DRM技术发展的主要问题之一.从催化剂活性...现代工业制氢技术中,甲烷重整制氢具有反应物丰富、可利用性高等独特优势,尤其甲烷干重整(Dry Reforming of Methane,DRM)技术,以甲烷和二氧化碳为原料,兼具环境和经济效益,而催化剂积碳是影响DRM技术发展的主要问题之一.从催化剂活性组分、载体和助剂方面,详细阐述催化剂组分相互作用、活性金属粒径、碱度、储氧能力和积碳类型对DRM催化剂抗积碳性能的影响.分析发现活性金属和载体的强相互作用、双金属的协同作用以及较小的活性金属颗粒均有助于减少积碳和提高催化剂活性,提高催化剂的储氧能力能促进碳脱除,积碳类型及数量与载体密切相关,载体碱度适中有助于增强CO_(2)的活化,提高催化剂抗积碳能力.研究结果为甲烷干重整制氢催化剂的设计和优化提供参考.展开更多
文摘现代工业制氢技术中,甲烷重整制氢具有反应物丰富、可利用性高等独特优势,尤其甲烷干重整(Dry Reforming of Methane,DRM)技术,以甲烷和二氧化碳为原料,兼具环境和经济效益,而催化剂积碳是影响DRM技术发展的主要问题之一.从催化剂活性组分、载体和助剂方面,详细阐述催化剂组分相互作用、活性金属粒径、碱度、储氧能力和积碳类型对DRM催化剂抗积碳性能的影响.分析发现活性金属和载体的强相互作用、双金属的协同作用以及较小的活性金属颗粒均有助于减少积碳和提高催化剂活性,提高催化剂的储氧能力能促进碳脱除,积碳类型及数量与载体密切相关,载体碱度适中有助于增强CO_(2)的活化,提高催化剂抗积碳能力.研究结果为甲烷干重整制氢催化剂的设计和优化提供参考.