在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的...在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的用户可选择移动至覆盖区域内进行任务卸载以最大化自身效用,可将用户设备的部分卸载问题转化为每个用户设备的效用最大化问题,并利用混合策略博弈和子模博弈来分别确定用户设备的移动概率和卸载数据量,从而得出最优卸载策略,且分别证明了混合策略纳什均衡和纯策略纳什均衡的存在性。仿真结果表明,所提方案与MBO(Binary Offloading Based on Mixed Strategy Game)等经典方案相比可有效提高用户设备的效用,并验证了其收敛性和稳定性。展开更多
移动边缘计算研究中,边缘服务器通过缓存任务数据可以有效节约计算资源,但如何分配缓存资源解决边缘服务器的竞争关系,以及能耗和效益问题,达到系统性能最优是一个NP难问题。为此提出基于缓存优化的在线势博弈资源分配策略OPSCO(online ...移动边缘计算研究中,边缘服务器通过缓存任务数据可以有效节约计算资源,但如何分配缓存资源解决边缘服务器的竞争关系,以及能耗和效益问题,达到系统性能最优是一个NP难问题。为此提出基于缓存优化的在线势博弈资源分配策略OPSCO(online potential-game strategy based on cache optimization),采用新的缓存替换策略CASCU(cache allocation strategy based on cache utility),最大化缓存的效用。通过优化边缘服务器的效益指示函数,将缓存替换代价等因素与李雅普诺夫优化、势博弈以及EWA(exponential weighting algorithm)算法结合,对边缘服务器的竞争关系建模,进行势博弈相关证明和分析。仿真结果表明,OPSCO相比于其他资源分配策略,可以明显提升任务完成率和缓存效用,并降低设备能耗和时间开销,解决了移动边缘计算在线缓存场景中的资源分配以及数据缓存问题。展开更多
文摘在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的用户可选择移动至覆盖区域内进行任务卸载以最大化自身效用,可将用户设备的部分卸载问题转化为每个用户设备的效用最大化问题,并利用混合策略博弈和子模博弈来分别确定用户设备的移动概率和卸载数据量,从而得出最优卸载策略,且分别证明了混合策略纳什均衡和纯策略纳什均衡的存在性。仿真结果表明,所提方案与MBO(Binary Offloading Based on Mixed Strategy Game)等经典方案相比可有效提高用户设备的效用,并验证了其收敛性和稳定性。
文摘移动边缘计算研究中,边缘服务器通过缓存任务数据可以有效节约计算资源,但如何分配缓存资源解决边缘服务器的竞争关系,以及能耗和效益问题,达到系统性能最优是一个NP难问题。为此提出基于缓存优化的在线势博弈资源分配策略OPSCO(online potential-game strategy based on cache optimization),采用新的缓存替换策略CASCU(cache allocation strategy based on cache utility),最大化缓存的效用。通过优化边缘服务器的效益指示函数,将缓存替换代价等因素与李雅普诺夫优化、势博弈以及EWA(exponential weighting algorithm)算法结合,对边缘服务器的竞争关系建模,进行势博弈相关证明和分析。仿真结果表明,OPSCO相比于其他资源分配策略,可以明显提升任务完成率和缓存效用,并降低设备能耗和时间开销,解决了移动边缘计算在线缓存场景中的资源分配以及数据缓存问题。