变压器振动信号频谱具有稀疏性,传统的信号分析方法需要计算整个频率范围内的频谱成分,计算速度慢。稀疏快速傅里叶变换(sparse fast Fourier transform,SFFT)算法只计算变压器振动信号的主要频谱成分,利用窗函数过滤信号,然后散列傅里...变压器振动信号频谱具有稀疏性,传统的信号分析方法需要计算整个频率范围内的频谱成分,计算速度慢。稀疏快速傅里叶变换(sparse fast Fourier transform,SFFT)算法只计算变压器振动信号的主要频谱成分,利用窗函数过滤信号,然后散列傅里叶系数,最后进行定位与估值运算,能快速的计算出信号频谱中k个拥有最大值的傅里叶系数。该算法结构简单,运行时间相对于信号长度n呈亚线性。通过分析变压器油箱的实际振动信号,验证了SFFT算法较之FFT算法运行速度快,非常适合振动信号的在线频谱分析。展开更多
针对稀疏快速傅里叶变换(Sparse Fast Fourier Transform,SFFT)并行码相位捕获算法抗噪性能较差的问题,提出了一种新的高抗噪性快速捕获算法。该算法依据伪码相关函数峰值唯一的特点,利用降采样快速傅里叶变换(Downsampling Fast Fourie...针对稀疏快速傅里叶变换(Sparse Fast Fourier Transform,SFFT)并行码相位捕获算法抗噪性能较差的问题,提出了一种新的高抗噪性快速捕获算法。该算法依据伪码相关函数峰值唯一的特点,利用降采样快速傅里叶变换(Downsampling Fast Fourier Transform,DFFT)取代了SFFT并行码相位捕获算法中对噪声容忍能力较差的定位循环与估值循环过程来对伪码相位进行捕获,同时对算法参数进行了优化设计。理论分析及仿真结果表明,与已有的SFFT快速捕获算法相比,SFFT-DT(Combination of SFFT and DFFT)捕获算法的计算速度提升了约19%,抗噪性能提升了约5 dB。与经典的FFT捕获算法相比,当两者抗噪性能近似相同(捕获概率大于95%的前提下)时,本文算法计算量比其减少了约43%。展开更多
The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse f...The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im- plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.展开更多
文摘变压器振动信号频谱具有稀疏性,传统的信号分析方法需要计算整个频率范围内的频谱成分,计算速度慢。稀疏快速傅里叶变换(sparse fast Fourier transform,SFFT)算法只计算变压器振动信号的主要频谱成分,利用窗函数过滤信号,然后散列傅里叶系数,最后进行定位与估值运算,能快速的计算出信号频谱中k个拥有最大值的傅里叶系数。该算法结构简单,运行时间相对于信号长度n呈亚线性。通过分析变压器油箱的实际振动信号,验证了SFFT算法较之FFT算法运行速度快,非常适合振动信号的在线频谱分析。
文摘针对稀疏快速傅里叶变换(Sparse Fast Fourier Transform,SFFT)并行码相位捕获算法抗噪性能较差的问题,提出了一种新的高抗噪性快速捕获算法。该算法依据伪码相关函数峰值唯一的特点,利用降采样快速傅里叶变换(Downsampling Fast Fourier Transform,DFFT)取代了SFFT并行码相位捕获算法中对噪声容忍能力较差的定位循环与估值循环过程来对伪码相位进行捕获,同时对算法参数进行了优化设计。理论分析及仿真结果表明,与已有的SFFT快速捕获算法相比,SFFT-DT(Combination of SFFT and DFFT)捕获算法的计算速度提升了约19%,抗噪性能提升了约5 dB。与经典的FFT捕获算法相比,当两者抗噪性能近似相同(捕获概率大于95%的前提下)时,本文算法计算量比其减少了约43%。
基金Project supported by the National Natural Science Foundation of China (Nos. 61301027, 61375015, and 11274226)
文摘The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im- plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.