期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
科研经费长期稳定支持与高校科技原始创新——基于中央高校基本科研业务费的准实验考察 被引量:6
1
作者 贾雯晴 俞建飞 《研究与发展管理》 CSSCI 北大核心 2023年第3期163-171,共9页
高校是国家实施创新驱动发展战略的重要阵地。持续稳定的科研投入尤其是经费投入,对提升我国原始创新能力,实现科技自立自强具有重要保障作用。中央高校基本科研业务费(简称“基本科研业务费”)是高校获得持续稳定科研经费支持的最主要... 高校是国家实施创新驱动发展战略的重要阵地。持续稳定的科研投入尤其是经费投入,对提升我国原始创新能力,实现科技自立自强具有重要保障作用。中央高校基本科研业务费(简称“基本科研业务费”)是高校获得持续稳定科研经费支持的最主要途径。本文在调研的基础上,运用数据包络分析方法,对75所教育部直属高校的基本科研业务费的效率水平进行了分析,研究发现,基本科研业务费的投入产出效率呈现增长态势,尤其是对青年教师事业发展、科研能力提升和重大原始创新能力增强方面具有促进作用,同时存在着稳定性经费投入不足、占比过低和过程管理较粗、机制运行不畅等问题。据此,本文提出了不断优化经费投入管理机制、推动我国高校科技事业高质量发展的政策建议。 展开更多
关键词 原始创新 资助方式 基本科研业务费 稳定性支持
下载PDF
单纯增加稳定性经费能否解决科研过度竞争? 被引量:2
2
作者 黄璐 蔡依洁 +1 位作者 徐洪 郑永和 《科学学研究》 CSSCI CSCD 北大核心 2023年第3期464-471,共8页
国际上对基础科研的资助普遍采取稳定性支持与竞争性支持相结合的双重资助体系。针对我国科技界普遍反映的“竞争性过度”问题,本文在开展广泛国内外调研对比的基础上,对我国稳定性支持与竞争性支持的实践工作进行了深度辨析。分析认为... 国际上对基础科研的资助普遍采取稳定性支持与竞争性支持相结合的双重资助体系。针对我国科技界普遍反映的“竞争性过度”问题,本文在开展广泛国内外调研对比的基础上,对我国稳定性支持与竞争性支持的实践工作进行了深度辨析。分析认为,该问题背后深层次的原因并不在于“经费”本身,也不在于“竞争”这一能发挥择优和激励功效的遴选方式,而在于国家级竞争类项目在各类事关科技人员成长的环节中影响力权重过大,同时机构自主使用的稳定性经费在实际操作过程中大多以竞争性模式分配,没有起到稳定性经费应该起到的培育和扶植作用。解决竞争性过度问题需要从科技计划项目管理、机构分类改革、科研人员薪酬制度改革、科技评价改革等多个方面协调推进,单纯增加稳定性支持经费并不是解决科研过度竞争问题的灵丹妙药。 展开更多
关键词 稳定性支持 竞争性支持 科研经费 投入结构 过度竞争
原文传递
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
3
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability Fisher discriminant analysis (FDA) support vector machines (SVMs) PREDICTION
下载PDF
Application of a support vector machine for prediction of slope stability 被引量:14
4
作者 XUE Xin Hua YANG Xing Guo CHEN Xin 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第12期2379-2386,共8页
Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(... Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(PSO) is proposed in this study to improve the forecasting performance. PSO was employed in selecting the appropriate SVM parameters to enhance the forecasting accuracy. Several important parameters, including the magnitude of unit weight, cohesion, angle of internal friction, slope angle, height, pore water pressure coefficient, were used as the input parameters, while the status of slope was the output parameter. The results show that the PSO-SVM is a powerful computational tool that can be used to predict the slope stability. 展开更多
关键词 slope stability support vector machine particle swarm optimization PREDICTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部