最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速...最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。展开更多
文摘最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。