A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study o...Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study of the influence of the infiltration rate in the building and the coefficient of thermal transfer by convection of the walls, on the thermal comfort using TRNSYS software. All the models carried out were validated by recognized scientific criteria, namely correlation (R) and determination (R2) coefficients on the one hand and NBME and CVRMSE coefficients defined by ASHARE, 2002 on the other hand. The results obtained indicate that the modulation of the air infiltration rate allows the simulations on TRNSYS to be compared to in-situ measurements, with an annual average relative difference of 2.86% on the temperature difference. Furthermore, depending on the parameterization of the heat transfer coefficients by convection of the internal and external walls of walls used in the STD, the average annual difference can be reduced by 1% to 4% between the predictions and the measurements.展开更多
Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage a...Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.展开更多
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.
文摘Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study of the influence of the infiltration rate in the building and the coefficient of thermal transfer by convection of the walls, on the thermal comfort using TRNSYS software. All the models carried out were validated by recognized scientific criteria, namely correlation (R) and determination (R2) coefficients on the one hand and NBME and CVRMSE coefficients defined by ASHARE, 2002 on the other hand. The results obtained indicate that the modulation of the air infiltration rate allows the simulations on TRNSYS to be compared to in-situ measurements, with an annual average relative difference of 2.86% on the temperature difference. Furthermore, depending on the parameterization of the heat transfer coefficients by convection of the internal and external walls of walls used in the STD, the average annual difference can be reduced by 1% to 4% between the predictions and the measurements.
文摘Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.