针对试验中发现的空滤器壳体辐射噪声大问题,综合运用模态计算、进气压力频谱计算、拓扑优化、形貌优化和声学有限元法解决了该问题。首先,通过模态计算,得出了空滤器外壳的各阶振型和模态频率。接着分析了发动机的进气压力波频谱,找出...针对试验中发现的空滤器壳体辐射噪声大问题,综合运用模态计算、进气压力频谱计算、拓扑优化、形貌优化和声学有限元法解决了该问题。首先,通过模态计算,得出了空滤器外壳的各阶振型和模态频率。接着分析了发动机的进气压力波频谱,找出了进气压力较大的频段,由此可知空滤器辐射噪声大是由于第1阶频率较低引起的。然后,通过拓扑优化和形貌优化,找出了筋的最佳布置位置,使空滤器外壳的第1阶频率得到大幅提高。最后,通过辐射噪声的计算,确认了改进后的空滤器外壳的总声功率级降低了13.8 d B,噪声改进效果非常明显。展开更多
文摘针对试验中发现的空滤器壳体辐射噪声大问题,综合运用模态计算、进气压力频谱计算、拓扑优化、形貌优化和声学有限元法解决了该问题。首先,通过模态计算,得出了空滤器外壳的各阶振型和模态频率。接着分析了发动机的进气压力波频谱,找出了进气压力较大的频段,由此可知空滤器辐射噪声大是由于第1阶频率较低引起的。然后,通过拓扑优化和形貌优化,找出了筋的最佳布置位置,使空滤器外壳的第1阶频率得到大幅提高。最后,通过辐射噪声的计算,确认了改进后的空滤器外壳的总声功率级降低了13.8 d B,噪声改进效果非常明显。