The authors construct a solution U_t(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a s...The authors construct a solution U_t(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity,namely one-fold differentiability.Besides,the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11171358,11026202,11101441)the Doctor Fund of Ministry of Education(Nos.20100171110038,20100171120041)the Natural Science Foundation of Guangdong Province(No.S2012040007458)
文摘The authors construct a solution U_t(x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity,namely one-fold differentiability.Besides,the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.