为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度...为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度特征提取模块,获取到具有全局上下文信息和位置信息的多尺度特征图像。通过残差学习网络对深度图进行优化,防止多次卷积操作出现重建边缘模糊的问题。通过分类的思想构建focal loss函数增强网络模型的判断能力。由实验结果可知,该算法在DTU(technical university of denmark)数据集上和CasMVSNet(Cascade MVSNet)算法相比,在整体精度误差、运行时间、显存资源占用上分别降低了14.08%、72.15%、4.62%。在Tanks and Temples数据集整体评价指标Mean上该模型优于其他算法,证明提出的基于自适应空间特征增强的多视图深度估计算法的有效性。展开更多
为提高低信噪比环境下的语音可懂度,提出了一种基于联合失真控制的子空间语音增强算法。由于误差信号中的语音失真和残余噪声分量不能被同时最小化,同时,由语音估计器引起的语音放大失真超过6.02 d B时会严重损害语音可懂度。为此分别...为提高低信噪比环境下的语音可懂度,提出了一种基于联合失真控制的子空间语音增强算法。由于误差信号中的语音失真和残余噪声分量不能被同时最小化,同时,由语音估计器引起的语音放大失真超过6.02 d B时会严重损害语音可懂度。为此分别对语音失真和残余噪声进行最小化处理,最小化时把语音放大失真控制在6.02 d B以下作为约束条件,通过求解两个约束最优化问题得到两个不同的估计器,再对这两个估计器进行加权求和,得到一种基于联合失真控制的语音估计器。实验结果表明,相比于传统的子空间增强方法,在低信噪比环境下所提出的算法能更有效提高增强后语音的可懂度。展开更多
文摘为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度特征提取模块,获取到具有全局上下文信息和位置信息的多尺度特征图像。通过残差学习网络对深度图进行优化,防止多次卷积操作出现重建边缘模糊的问题。通过分类的思想构建focal loss函数增强网络模型的判断能力。由实验结果可知,该算法在DTU(technical university of denmark)数据集上和CasMVSNet(Cascade MVSNet)算法相比,在整体精度误差、运行时间、显存资源占用上分别降低了14.08%、72.15%、4.62%。在Tanks and Temples数据集整体评价指标Mean上该模型优于其他算法,证明提出的基于自适应空间特征增强的多视图深度估计算法的有效性。
文摘为提高低信噪比环境下的语音可懂度,提出了一种基于联合失真控制的子空间语音增强算法。由于误差信号中的语音失真和残余噪声分量不能被同时最小化,同时,由语音估计器引起的语音放大失真超过6.02 d B时会严重损害语音可懂度。为此分别对语音失真和残余噪声进行最小化处理,最小化时把语音放大失真控制在6.02 d B以下作为约束条件,通过求解两个约束最优化问题得到两个不同的估计器,再对这两个估计器进行加权求和,得到一种基于联合失真控制的语音估计器。实验结果表明,相比于传统的子空间增强方法,在低信噪比环境下所提出的算法能更有效提高增强后语音的可懂度。