针对对称失真和非对称失真图像的评价问题,提出了一种基于双目融合的无参考立体图像质量评价方法。首先,分别将立体图像的左、右视点图像分解成拉普拉斯金字塔序列,利用图像平均梯度和区域能量确定各层融合系数,在双目加权模型的基础上...针对对称失真和非对称失真图像的评价问题,提出了一种基于双目融合的无参考立体图像质量评价方法。首先,分别将立体图像的左、右视点图像分解成拉普拉斯金字塔序列,利用图像平均梯度和区域能量确定各层融合系数,在双目加权模型的基础上逐层融合两序列并重构合成图像。然后,提取左、右视点图像、合成图像的多尺度多方向频域变换特征和对比度、熵、能量、逆差分矩特征。最后,将特征参数作为支持向量回归模型的输入进行训练并预测图像质量。在LIVE 3D phaseⅠ和LIVE 3D phaseⅡ图像库上作相关性分析,其Pearson线性相关系数和Spearman等级相关系数均分别达到0.96和0.95以上。结果表明,本文方法对立体图像质量的预测结果与主观评价值具有较高的一致性。展开更多
立体图像质量评价(SIQA)是评估立体成像系统性能的一种有效方法。考虑到深度信息是立体图像的重要特征,提出一种结合卷积神经网络(CNN)与立体图像深度显著性特征的无参考SIQA方法。分别利用改进显著特征检测模型和高斯差分滤波器提取立...立体图像质量评价(SIQA)是评估立体成像系统性能的一种有效方法。考虑到深度信息是立体图像的重要特征,提出一种结合卷积神经网络(CNN)与立体图像深度显著性特征的无参考SIQA方法。分别利用改进显著特征检测模型和高斯差分滤波器提取立体图像的显著特征和深度特征,并通过小波变换融合两者得到深度显著性特征。在此基础上,将深度显著性特征、对比度特征和亮度系数归一化特征作为输入特征对CNN进行模型训练,从而预测图像的质量分数。该方法在LIVE 3D IQA PhaseⅠ、PhaseⅡ、NBU 3D IQA图像库上的皮尔森线性相关系数分别为0.948、0.962、0.943,斯皮尔曼秩相关系数分别为0.937、0.961、0.902,在Phase II、NBU 3D IQA跨数据库上的斯皮尔曼秩相关系数分别为0.832、0.673。实验结果表明,该方法预测的质量分数符合人类主观感知,且具有较好的适用性和鲁棒性。展开更多
文摘针对对称失真和非对称失真图像的评价问题,提出了一种基于双目融合的无参考立体图像质量评价方法。首先,分别将立体图像的左、右视点图像分解成拉普拉斯金字塔序列,利用图像平均梯度和区域能量确定各层融合系数,在双目加权模型的基础上逐层融合两序列并重构合成图像。然后,提取左、右视点图像、合成图像的多尺度多方向频域变换特征和对比度、熵、能量、逆差分矩特征。最后,将特征参数作为支持向量回归模型的输入进行训练并预测图像质量。在LIVE 3D phaseⅠ和LIVE 3D phaseⅡ图像库上作相关性分析,其Pearson线性相关系数和Spearman等级相关系数均分别达到0.96和0.95以上。结果表明,本文方法对立体图像质量的预测结果与主观评价值具有较高的一致性。
文摘立体图像质量评价(SIQA)是评估立体成像系统性能的一种有效方法。考虑到深度信息是立体图像的重要特征,提出一种结合卷积神经网络(CNN)与立体图像深度显著性特征的无参考SIQA方法。分别利用改进显著特征检测模型和高斯差分滤波器提取立体图像的显著特征和深度特征,并通过小波变换融合两者得到深度显著性特征。在此基础上,将深度显著性特征、对比度特征和亮度系数归一化特征作为输入特征对CNN进行模型训练,从而预测图像的质量分数。该方法在LIVE 3D IQA PhaseⅠ、PhaseⅡ、NBU 3D IQA图像库上的皮尔森线性相关系数分别为0.948、0.962、0.943,斯皮尔曼秩相关系数分别为0.937、0.961、0.902,在Phase II、NBU 3D IQA跨数据库上的斯皮尔曼秩相关系数分别为0.832、0.673。实验结果表明,该方法预测的质量分数符合人类主观感知,且具有较好的适用性和鲁棒性。