针对复杂背景中目标边缘提取的问题,提出一种基于梯度幅度直方图和类内方差进行边缘提取的新方法———CAGH(cluster algorithm based on gradient histogram)算法。该算法先分析经“非最大梯度抑制”后的梯度幅度直方图的特征,确定边...针对复杂背景中目标边缘提取的问题,提出一种基于梯度幅度直方图和类内方差进行边缘提取的新方法———CAGH(cluster algorithm based on gradient histogram)算法。该算法先分析经“非最大梯度抑制”后的梯度幅度直方图的特征,确定边缘集中区域,再通过类内方差确定梯度阈值,并利用该阈值确定边缘。在车牌识别中运用该方法提取复杂背景中的车牌边缘,并与Sobel、Canny等算法进行了比较。结果表明,CAGH算法适应性强、提取效率高,提取的是连通性、独立性好的单像素边缘,有利于后续的特征提取和模式识别。展开更多
最近提出的基于特征缺失的支持向量机(support vector machine with absent features,AF-SVM)在处理具有特征缺失的数据分类时,得到的分类超平面不能很好地适应数据的总体分布,并存在两类误分的比例相差比较大的问题。为此,本文通过引...最近提出的基于特征缺失的支持向量机(support vector machine with absent features,AF-SVM)在处理具有特征缺失的数据分类时,得到的分类超平面不能很好地适应数据的总体分布,并存在两类误分的比例相差比较大的问题。为此,本文通过引入最小类内方差支持向量机(minimum class variance SVM,MCVSVM)分类机制,提出了基于特征缺失的最小类内方差支持向量机(minimum within-class variance SVM with absent features,AF-V-SVM)。AF-V-SVM一方面可以依据数据集的分布特性,改善分类超平面的方向性;另一方面,通过自由设置分类间隔的定义空间,调整误分的比例。实验表明,与其他基于特征缺省的分类方法相比,该方法不仅提高了分类正确率而且使分类效果更加合理。展开更多
为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于...为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于公共矢量的总间隔v最小类内方差支持向量机(Total margin v minimum class variance support vector machines based on common vectors,TM-v-M(CV)2SVMs)。受公共矢量(commonvectors,CVs)的启发,引入了散度矩阵以进一步提高算法的分类性能和抗噪性能,并给出了TM-v-M(CV)2SVMs的推导过程。经实验证明,在噪音人脸图像的分类问题中,TM-v-M(CV)2SVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能和抗噪性能。展开更多
文摘针对复杂背景中目标边缘提取的问题,提出一种基于梯度幅度直方图和类内方差进行边缘提取的新方法———CAGH(cluster algorithm based on gradient histogram)算法。该算法先分析经“非最大梯度抑制”后的梯度幅度直方图的特征,确定边缘集中区域,再通过类内方差确定梯度阈值,并利用该阈值确定边缘。在车牌识别中运用该方法提取复杂背景中的车牌边缘,并与Sobel、Canny等算法进行了比较。结果表明,CAGH算法适应性强、提取效率高,提取的是连通性、独立性好的单像素边缘,有利于后续的特征提取和模式识别。
文摘最近提出的基于特征缺失的支持向量机(support vector machine with absent features,AF-SVM)在处理具有特征缺失的数据分类时,得到的分类超平面不能很好地适应数据的总体分布,并存在两类误分的比例相差比较大的问题。为此,本文通过引入最小类内方差支持向量机(minimum class variance SVM,MCVSVM)分类机制,提出了基于特征缺失的最小类内方差支持向量机(minimum within-class variance SVM with absent features,AF-V-SVM)。AF-V-SVM一方面可以依据数据集的分布特性,改善分类超平面的方向性;另一方面,通过自由设置分类间隔的定义空间,调整误分的比例。实验表明,与其他基于特征缺省的分类方法相比,该方法不仅提高了分类正确率而且使分类效果更加合理。
文摘为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于公共矢量的总间隔v最小类内方差支持向量机(Total margin v minimum class variance support vector machines based on common vectors,TM-v-M(CV)2SVMs)。受公共矢量(commonvectors,CVs)的启发,引入了散度矩阵以进一步提高算法的分类性能和抗噪性能,并给出了TM-v-M(CV)2SVMs的推导过程。经实验证明,在噪音人脸图像的分类问题中,TM-v-M(CV)2SVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能和抗噪性能。