针对绿洲灌区玉米生产中普遍水肥投入大、利用效率低等问题,通过研究不同灌水量和有机无机肥等氮配施对玉米光合生理、籽粒产量和品质的影响,以期获得最佳的灌水水平和有机无机肥等氮配施比例。2021—2022年,在绿洲灌区采用两因素裂区...针对绿洲灌区玉米生产中普遍水肥投入大、利用效率低等问题,通过研究不同灌水量和有机无机肥等氮配施对玉米光合生理、籽粒产量和品质的影响,以期获得最佳的灌水水平和有机无机肥等氮配施比例。2021—2022年,在绿洲灌区采用两因素裂区试验设计,主区为2个灌水水平(传统灌水和减量20%灌水),副区为5个有机无机肥等氮配施比例(全施无机氮肥、75%无机氮肥+25%有机肥、50%无机氮肥+50%有机肥、25%无机氮肥+75%有机肥和全施有机肥),探究玉米光合生理、籽粒产量和品质对不同水氮管理模式的响应特征。结果表明,与传统灌水(I2)相比,减量20%灌水(I1)降低了玉米叶面积指数(leaf area index,LAI)、光合势(photosynthetic potential,LAD)、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs),提高了胞间CO_(2)浓度(Ci)、籽粒蛋白质含量和籽粒苏氨酸含量;有机无机肥配施对玉米光合生理指标、籽粒产量和品质都有显著影响,随有机肥比例增加,有机无机肥配施对玉米的影响会逐渐从正效应变为负效应;与传统灌水结合全施无机氮肥(I2F1)相比,减量20%灌水结合75%无机氮肥+25%有机肥(I1F2)玉米平均叶面积指数(mean leaf area index,MLAI)提高了6.9%~7.1%,总光合势(total photosynthetic potential,TLAD)无显著变化;玉米吐丝期-蜡熟期LAI提高了5.0%~11.4%,吐丝期-蜡熟期LAD提高了7.5%~9.1%。I1F2较I2F1提高了玉米抽雄期-蜡熟期叶绿素含量(chlorophyll content,SPAD)、Pn、Tr和Gs,降低了Ci。2年内I1F2较I2F1玉米增产12.0%~12.5%,籽粒中蛋白含量提高了6.9%~18.9%,籽粒中苯丙氨酸、赖氨酸、苏氨酸、色氨酸、亮氨酸、异亮氨酸和缬氨酸含量分别提高了29.6%~43.3%、77.7%~93.3%、49.7%~51.5%、18.4%~28.6%、39.5%~46.0%、57.4%~78.1%和35.1%~41.3%。其他处理对玉米光合生理、籽粒产量及品质指标也有一定影响,但综合2年结果,I1F2影响更显著。因此,减量20%灌水(3240 m^(3)hm^(–2))结合75%无机化学氮肥(270 kg hm^(–2))配施25%有机肥(90 kg hm^(–2))是实现西北灌区玉米高产优质生产目标的适宜水氮管理模式。展开更多
针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期...针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期间采集数据。试验采用裂区设计,主区设4种绿肥种植模式,即麦后分别复种毛叶苕子混播箭筈豌豆(HCV)、箭筈豌豆(CV)、油菜(R)和麦后休闲(F);副区为3种施氮水平:试区习惯施氮量(N3,180 kg hm^(–2))、习惯施氮减量20%(N2,144 kg hm^(-2))、习惯施氮减量40%(N1,108 kg hm^(-2))。研究表明,习惯施氮减量20%和40%显著降低了小麦籽粒产量和氮素吸收,但麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的籽粒产量和氮素吸收损失,且麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高小麦籽粒产量21.4%和氮素吸收6.9%(P<0.05)。麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的氮素利用率损失,且其结合减量施氮20%氮素利用率提高13.4%(P<0.05)。其补偿机制归因于:(1)麦后复种毛叶苕子混播箭筈豌豆在减量施氮40%条件下可补偿小麦氮素吸收速率,提高氮素净同化速率34.3%(P<0.05),维持穗部氮素分配,增加茎氮素转运率6.6%(P<0.05)。(2)与麦后休闲传统施氮量相比,麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高氮素平均吸收速率和氮素净同化速率7.2%和34.1%(P<0.05),增加灌浆初期至成熟期穗氮素分配6.7%(P<0.05),提高叶、茎氮素对穗的转运贡献率17.8%、8.9%(P<0.05)。因此,在干旱绿洲灌区,麦后复种毛叶苕子混播箭筈豌豆是实现小麦减氮40%的可行措施,麦后复种毛叶苕子混播箭筈豌豆结合减氮20%可通过提高小麦氮素吸收速率和氮素净同化率,提高叶、茎对穗的转运贡献率从而促进穗部氮素分配,实现小麦产量和氮素利用率双提升。展开更多
利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),...利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R^(2))的冠层含水量(canopy water content,CWC)与籽粒产量的定量关系,利用植被指数和连续小波变换对光谱反射率数据进行处理,采用线性回归方法构建CWC定量反演模型,进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明,(1)利用小波特征构建的CWC估测模型的预测效果高于植被指数,V6、VT和R^(2)期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高,R^(2)分别为0.770、0.291和0.233。(2)CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01),V6、VT和R^(2)期的R^(2)分别为0.596、0.366和0.439。(3)基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R^(2)=0.577,RMSE=1.625 t hm^(–2)),可作为预测玉米籽粒产量的最佳时期。因此,本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测,为未来大面积监测玉米生产力提供了理论依据。展开更多
文摘针对绿洲灌区玉米生产中普遍水肥投入大、利用效率低等问题,通过研究不同灌水量和有机无机肥等氮配施对玉米光合生理、籽粒产量和品质的影响,以期获得最佳的灌水水平和有机无机肥等氮配施比例。2021—2022年,在绿洲灌区采用两因素裂区试验设计,主区为2个灌水水平(传统灌水和减量20%灌水),副区为5个有机无机肥等氮配施比例(全施无机氮肥、75%无机氮肥+25%有机肥、50%无机氮肥+50%有机肥、25%无机氮肥+75%有机肥和全施有机肥),探究玉米光合生理、籽粒产量和品质对不同水氮管理模式的响应特征。结果表明,与传统灌水(I2)相比,减量20%灌水(I1)降低了玉米叶面积指数(leaf area index,LAI)、光合势(photosynthetic potential,LAD)、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs),提高了胞间CO_(2)浓度(Ci)、籽粒蛋白质含量和籽粒苏氨酸含量;有机无机肥配施对玉米光合生理指标、籽粒产量和品质都有显著影响,随有机肥比例增加,有机无机肥配施对玉米的影响会逐渐从正效应变为负效应;与传统灌水结合全施无机氮肥(I2F1)相比,减量20%灌水结合75%无机氮肥+25%有机肥(I1F2)玉米平均叶面积指数(mean leaf area index,MLAI)提高了6.9%~7.1%,总光合势(total photosynthetic potential,TLAD)无显著变化;玉米吐丝期-蜡熟期LAI提高了5.0%~11.4%,吐丝期-蜡熟期LAD提高了7.5%~9.1%。I1F2较I2F1提高了玉米抽雄期-蜡熟期叶绿素含量(chlorophyll content,SPAD)、Pn、Tr和Gs,降低了Ci。2年内I1F2较I2F1玉米增产12.0%~12.5%,籽粒中蛋白含量提高了6.9%~18.9%,籽粒中苯丙氨酸、赖氨酸、苏氨酸、色氨酸、亮氨酸、异亮氨酸和缬氨酸含量分别提高了29.6%~43.3%、77.7%~93.3%、49.7%~51.5%、18.4%~28.6%、39.5%~46.0%、57.4%~78.1%和35.1%~41.3%。其他处理对玉米光合生理、籽粒产量及品质指标也有一定影响,但综合2年结果,I1F2影响更显著。因此,减量20%灌水(3240 m^(3)hm^(–2))结合75%无机化学氮肥(270 kg hm^(–2))配施25%有机肥(90 kg hm^(–2))是实现西北灌区玉米高产优质生产目标的适宜水氮管理模式。
文摘针对西北绿洲灌区小麦连作普遍、化肥施用量较大及氮素利用率低等问题,探究麦后复种绿肥对减量施氮小麦籽粒产量和氮素利用的补偿效应,以期为构建减氮小麦高效生产技术提供理论依据。本研究依托始于2018年的定位试验进行,2020-2022年期间采集数据。试验采用裂区设计,主区设4种绿肥种植模式,即麦后分别复种毛叶苕子混播箭筈豌豆(HCV)、箭筈豌豆(CV)、油菜(R)和麦后休闲(F);副区为3种施氮水平:试区习惯施氮量(N3,180 kg hm^(–2))、习惯施氮减量20%(N2,144 kg hm^(-2))、习惯施氮减量40%(N1,108 kg hm^(-2))。研究表明,习惯施氮减量20%和40%显著降低了小麦籽粒产量和氮素吸收,但麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的籽粒产量和氮素吸收损失,且麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高小麦籽粒产量21.4%和氮素吸收6.9%(P<0.05)。麦后复种毛叶苕子混播箭筈豌豆可补偿因减量施氮40%造成的氮素利用率损失,且其结合减量施氮20%氮素利用率提高13.4%(P<0.05)。其补偿机制归因于:(1)麦后复种毛叶苕子混播箭筈豌豆在减量施氮40%条件下可补偿小麦氮素吸收速率,提高氮素净同化速率34.3%(P<0.05),维持穗部氮素分配,增加茎氮素转运率6.6%(P<0.05)。(2)与麦后休闲传统施氮量相比,麦后复种毛叶苕子混播箭筈豌豆结合减量施氮20%提高氮素平均吸收速率和氮素净同化速率7.2%和34.1%(P<0.05),增加灌浆初期至成熟期穗氮素分配6.7%(P<0.05),提高叶、茎氮素对穗的转运贡献率17.8%、8.9%(P<0.05)。因此,在干旱绿洲灌区,麦后复种毛叶苕子混播箭筈豌豆是实现小麦减氮40%的可行措施,麦后复种毛叶苕子混播箭筈豌豆结合减氮20%可通过提高小麦氮素吸收速率和氮素净同化率,提高叶、茎对穗的转运贡献率从而促进穗部氮素分配,实现小麦产量和氮素利用率双提升。
文摘利用高光谱遥感技术监测作物水分状况和籽粒产量,对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505,于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱),分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R^(2))的冠层含水量(canopy water content,CWC)与籽粒产量的定量关系,利用植被指数和连续小波变换对光谱反射率数据进行处理,采用线性回归方法构建CWC定量反演模型,进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明,(1)利用小波特征构建的CWC估测模型的预测效果高于植被指数,V6、VT和R^(2)期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高,R^(2)分别为0.770、0.291和0.233。(2)CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01),V6、VT和R^(2)期的R^(2)分别为0.596、0.366和0.439。(3)基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R^(2)=0.577,RMSE=1.625 t hm^(–2)),可作为预测玉米籽粒产量的最佳时期。因此,本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测,为未来大面积监测玉米生产力提供了理论依据。