Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-dev...Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.展开更多
BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and mediu...BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and medium earth orbit(MEO)satellite-based featured services in this paper.The former refers to regional services consisting of the regional short message communication service(RSMCS),the radio determination satellite service(RDSS),the BDS satellite-based augmented service(BDSBAS)and the satellite-based precise point positioning service via B2b signal(B2b-PPP).The latter refers to global services consisting of the global short message communication service(GSMCS)and the MEO satellite-based search and rescue(MEOSAR)service.The focus of this paper is to describe these featured services and evaluate their performances.The results show that the inter-satellite link(ISL)contributes a lot to the accuracy improvement of orbit determination and time synchronization for the whole constellation.Compared with some other final products,the root mean squares(RMS)of the BDS-3 precise orbits and broadcast clock are 25.1 cm and 2.01 ns,respectively.The positioning accuracy of single frequency is better than 6 m,and that of the generalized RDSS is usually better than 12 m.For featured services,the success rates of RSMCS and GSMCS are better than 99.9% and 95.6%,respectively;the positioning accuracies of single and dual frequency BDSBAS are better than 3 and 2 m,respectively;the positioning accuracy of B2b-PPP is better than 0.6 m,and the convergence time is usually smaller than 30 min;the single station test shows that the success rate of MEOSAR is better than 99%.Due to the ISL realization in the BDS-3 constellation,the performance and capacities of the global featured services are improved significantly.展开更多
The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(...The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.展开更多
The positioning precision of the transmitting Chinese Area Positioning System(CAPS) is reduced due to the non-ideal distribution of the satellite constellation.Positioning and navigation enhancement methods are able t...The positioning precision of the transmitting Chinese Area Positioning System(CAPS) is reduced due to the non-ideal distribution of the satellite constellation.Positioning and navigation enhancement methods are able to improve the reliability and accuracy of the positioning system,especially for users in special regions and special applications.In this paper,a positioning enhanced scheme based on ultra-wide band(UWB) pseudolite is proposed for CAPS.It is demonstrated that the link budget of UWB pseudolite satisfies the FCC's emission mask requirements.The localization algorithm of the enhanced CAPS is presented.The simulations indicate that the positioning precision of the proposed enhanced scheme is improved greatly,and the feasibility of the enhanced scheme is thus proved.展开更多
文摘Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.
基金supported by the National Natural Science Foundation of China(41931076,L1924033,and 41904042)National Key Research and Development Program of China(2020YFB0505800)。
文摘BeiDou Global Navigation Satellite System(BDS-3)not only performs the normal positioning,navigation and timing(PNT)functions,but also provides featured services,which are divided into geostationary orbit(GEO)and medium earth orbit(MEO)satellite-based featured services in this paper.The former refers to regional services consisting of the regional short message communication service(RSMCS),the radio determination satellite service(RDSS),the BDS satellite-based augmented service(BDSBAS)and the satellite-based precise point positioning service via B2b signal(B2b-PPP).The latter refers to global services consisting of the global short message communication service(GSMCS)and the MEO satellite-based search and rescue(MEOSAR)service.The focus of this paper is to describe these featured services and evaluate their performances.The results show that the inter-satellite link(ISL)contributes a lot to the accuracy improvement of orbit determination and time synchronization for the whole constellation.Compared with some other final products,the root mean squares(RMS)of the BDS-3 precise orbits and broadcast clock are 25.1 cm and 2.01 ns,respectively.The positioning accuracy of single frequency is better than 6 m,and that of the generalized RDSS is usually better than 12 m.For featured services,the success rates of RSMCS and GSMCS are better than 99.9% and 95.6%,respectively;the positioning accuracies of single and dual frequency BDSBAS are better than 3 and 2 m,respectively;the positioning accuracy of B2b-PPP is better than 0.6 m,and the convergence time is usually smaller than 30 min;the single station test shows that the success rate of MEOSAR is better than 99%.Due to the ISL realization in the BDS-3 constellation,the performance and capacities of the global featured services are improved significantly.
基金supported by the National Natural Science Foundation of China(Grant Nos.11033004 and 11203009)the Shanghai Committee of Science and Technology,China(Grant No.11ZR1443500)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.12DZ2273300)
文摘The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61173012. 61173036)the National Basic Research Program of China (Grant No. 2007CB815500)+2 种基金the National High Technology Research and Development Program of China(Grant No. 2007AA12z343)the State Key Laboratory of Integrated Services Networks Open Project (Grant No. ISN12-05)the Open Fund Project of Key Laboratory in Hunan Universities (Grant No. 11K017)
文摘The positioning precision of the transmitting Chinese Area Positioning System(CAPS) is reduced due to the non-ideal distribution of the satellite constellation.Positioning and navigation enhancement methods are able to improve the reliability and accuracy of the positioning system,especially for users in special regions and special applications.In this paper,a positioning enhanced scheme based on ultra-wide band(UWB) pseudolite is proposed for CAPS.It is demonstrated that the link budget of UWB pseudolite satisfies the FCC's emission mask requirements.The localization algorithm of the enhanced CAPS is presented.The simulations indicate that the positioning precision of the proposed enhanced scheme is improved greatly,and the feasibility of the enhanced scheme is thus proved.