车辆型号识别在智能交通系统、涉车刑侦案件侦破等方面具有十分重要的应用前景.针对车辆型号种类繁多、部分型号区分度小等带来的车辆型号精细分类困难的问题,采用车辆正脸图像为数据源,提出一种多分支多维度特征融合的卷积神经网络模型...车辆型号识别在智能交通系统、涉车刑侦案件侦破等方面具有十分重要的应用前景.针对车辆型号种类繁多、部分型号区分度小等带来的车辆型号精细分类困难的问题,采用车辆正脸图像为数据源,提出一种多分支多维度特征融合的卷积神经网络模型Fg-CarNet (Convolutional neural networks for car fine-grained classification, Fg-CarNet).该模型根据车正脸图像特征分布特点,将其分为上下两部分并行进行特征提取,并对网络中间层产生的特征进行两个维度的融合,以提取有区分度的特征,提高特征表达能力,通过使用小卷积核以及全局均值池化,使在网络分类准确度提高的同时降低了网络模型参数大小.在CompCars数据集上进行验证,实验结果表明, Fg-CarNet提取的车辆特征在保证网络模型参数最小的同时,车辆型号识别率达到最高,实现了最好的分类效果.展开更多
已有城市轨道交通车站分类多基于定性分析,不能满足精细化设计和运营的需要。本文提出一种基于聚类站点公共特征的站点精细分类方法。首先,将来源于AFC(Automatic Fare Collection)的进站客流量数据处理为时间序列数据,并基于K-Means++...已有城市轨道交通车站分类多基于定性分析,不能满足精细化设计和运营的需要。本文提出一种基于聚类站点公共特征的站点精细分类方法。首先,将来源于AFC(Automatic Fare Collection)的进站客流量数据处理为时间序列数据,并基于K-Means++算法对各个站点的客流量进行聚类;其次,建立客流量聚类结果与土地利用特征多维参数的拟合方程,计算获得居住密集型、工作就业型以及区域中心型等5种大类站点的客流量公共特征。在此基础上,充分考虑属于同一大类站点不同站点的细分特性,使用5类客流量公共特征比重组合精细描述具体站点类型。实例结果表明,使用本文提出的精细分类方法计算得到的每个站的客流量拟合值与真实客流值间的平均绝对百分比误差控制在14%以内,说明该分类方法具有可行性。展开更多
文摘车辆型号识别在智能交通系统、涉车刑侦案件侦破等方面具有十分重要的应用前景.针对车辆型号种类繁多、部分型号区分度小等带来的车辆型号精细分类困难的问题,采用车辆正脸图像为数据源,提出一种多分支多维度特征融合的卷积神经网络模型Fg-CarNet (Convolutional neural networks for car fine-grained classification, Fg-CarNet).该模型根据车正脸图像特征分布特点,将其分为上下两部分并行进行特征提取,并对网络中间层产生的特征进行两个维度的融合,以提取有区分度的特征,提高特征表达能力,通过使用小卷积核以及全局均值池化,使在网络分类准确度提高的同时降低了网络模型参数大小.在CompCars数据集上进行验证,实验结果表明, Fg-CarNet提取的车辆特征在保证网络模型参数最小的同时,车辆型号识别率达到最高,实现了最好的分类效果.
文摘已有城市轨道交通车站分类多基于定性分析,不能满足精细化设计和运营的需要。本文提出一种基于聚类站点公共特征的站点精细分类方法。首先,将来源于AFC(Automatic Fare Collection)的进站客流量数据处理为时间序列数据,并基于K-Means++算法对各个站点的客流量进行聚类;其次,建立客流量聚类结果与土地利用特征多维参数的拟合方程,计算获得居住密集型、工作就业型以及区域中心型等5种大类站点的客流量公共特征。在此基础上,充分考虑属于同一大类站点不同站点的细分特性,使用5类客流量公共特征比重组合精细描述具体站点类型。实例结果表明,使用本文提出的精细分类方法计算得到的每个站的客流量拟合值与真实客流值间的平均绝对百分比误差控制在14%以内,说明该分类方法具有可行性。