Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localize...Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.展开更多
Aim To study the reaction mechanism between gatifloxacin and bovine serumalbumin (BSA) at different pHs. Methods Fluorescence spectra and UV absorbance spectra were used.Results The binding constants were determined f...Aim To study the reaction mechanism between gatifloxacin and bovine serumalbumin (BSA) at different pHs. Methods Fluorescence spectra and UV absorbance spectra were used.Results The binding constants were determined from a double reciprocal Lineweaver-Burk curves atdifferent pHs. The binding distance r under normal physiological condition was obtained according toFoster theory of non-radiative energy transfer. The binding force between gatifloxacin and BSA wasinferred by thermody-namical coordination. Conclusion The interaction between gatifloxacin and BSAseems to be strong and the main binding force is electrostatic force.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
Two new diarylamine-substituted 1, 8-naphthalimide derivatives are synthesized by Cu I/18-crown-6/K2CO3 catalyst system and characterized by Fourier transform infrared (FT- IR), ^1H-NMR and elemental analyses. The U...Two new diarylamine-substituted 1, 8-naphthalimide derivatives are synthesized by Cu I/18-crown-6/K2CO3 catalyst system and characterized by Fourier transform infrared (FT- IR), ^1H-NMR and elemental analyses. The UV-vis absorption and photoluminescent (PL)spectra of the systems in n-hexane, tetrahydrofuran(THF), and CH2Cl2 are investigated. These naphthalimide molecules have an absorption band centered at about 450 nm, which is assigned to an intramolecular chargetransfer (ICT)transition, and they emit light at 492, 501 nm in a nonpolar solvent such as n-hexane, and at 600, 620 nm in a polar solvent such as CH2Cl2. From the Lippert-Mataga equation, the difference of the dipole moment between the excited state and the ground state is estimated to be 9.2 and 9.8 D for 4- ( diphenylamine )-N-( 2-methoxyphenyl )-1, 8-naphthalimide ( DMN-1 ) and 4-( 2-naphthylphenylamine )-N-( 2- methoxyphenyl)-1, 8-naphthalimide (DMN-2), respectively. This large change in the dipole moment upon excitation is typical for photoinduced ICT processes.展开更多
The taxonomy characteriazation and cadmium (Cd) biosorption of the high Cd-resistant fungus M1 were investigated. The internal transcribed spacers (ITS) region and β-tubulin genes of the strain were amplified, se...The taxonomy characteriazation and cadmium (Cd) biosorption of the high Cd-resistant fungus M1 were investigated. The internal transcribed spacers (ITS) region and β-tubulin genes of the strain were amplified, sequenced and analyzed by molecular biology technology. The Cd biosorption assay was performed by shaking flask. Fourier transform infrared spectroscopy was used to analyze the mycelium. The similarity of gene sequences and phylogenetic trees show the very close relation between the strain and Paecilomyces lilacinus, and the fungus M1 was identified as P. Lilacinus. The initial pH 6 and Cd concentration about 100 mg/L are optimum. Zn and Mn have a little effect on the Cd biosorption of the strain, while Cu and Pb present obvious effects. FTIR analysis shows that the fungus adsorbs Cd by esters, anhydride, and amide. With the preferable absorption capacity, fungus M1 is considered to have good prospects in bioremediation.展开更多
[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation...[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation in plate.By using column chromatography and thin-layer chromatography,pigment fractions were separated and purified from the extractives of the strain after fermentation in flask,and then pigment fractions were analyzed via UV-Vis and LC/MS.[Result] A red pigment-producing Serratia marcescens strain NS-17 sampled from soil of Nanchang was isolated and identified.2 pigment fractions showing similar UV-Vis and LC/MS characters were separated and purified,the characters of fraction 1 were identical to those of prodigiosin,while fraction 2 showed a special UV-Vis absorption spectrum that had not been reported.[Conclusion] A prodigiosin-producing Serratia marcescens strain NS-17 and its 2 pigment fractions were isolated.展开更多
Chlorine dioxide (OC10) is an important indicator for Cl-activation. The monitoring of OC10 appears to be crucial for understanding the chemistry of Cl-initialed oxidation and its impact on air quality in polluted c...Chlorine dioxide (OC10) is an important indicator for Cl-activation. The monitoring of OC10 appears to be crucial for understanding the chemistry of Cl-initialed oxidation and its impact on air quality in polluted coastal regions and industrialized areas. We report the development of a Xe arc lamp based near-ultraviolet (335-375 nm) incoherent broad- band cavity enhanced absorption spectroscopy (IBBCEAS) spectrometer for quantitative assessment of OC10 in an atmospheric simulation chamber. The important intermediate compound CH20, and other key atmospheric trace species (NO2) were also simultaneously measured. The instrumental performance shows a strong potential of this kind of IBBCEAS instrument for field and laboratory studies of atmospheric halogen chemistry.展开更多
The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 speci...The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 species, especially several radicals and isomers, were detected and identified from the measurements of photoionization efficiency (PIE) spectra. Based on the mass spectrometric analysis, the characteristics of n-butane and i-butane pyrolysis were discussed, which provided experimental evidences for the discussion of decomposition pathways of butane isomers. It is concluded that the isomeric structures of n-butane and i-butane have strong influence on their main decomposition pathways, and lead to dramatic differences in their mass spectra and PIE spectra such as the different dominant products and isomeric structures of butene products. Furthermore, compared with n-butane,i-butane can produce strong signals of benzene at low temperature in its pyrolysis due to the enhanced formation of benzene precursors like propargyl and C4 species, which provides experimental clues to explain the higher sooting tendencies of iso-alkanes than n-alkanes.展开更多
Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the vale...Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the valence band maximum of TiO2, preventing the hole transfer. To study the level alignment of this system, electronic structure of methanol covered TiO2(110) surface has been measured by ultraviolet photoelectron spectroscopy and the molecular orbitals of adsorbed methanol have been clearly identified. The results indicate the weak interaction between methanol and TiO2 substrate. The static electronic structure also suggests the mismatch of the energy levels. These static experiments have been performed without band gap excitation which is the prerequisite of a photocatalytie process. Future study of the transient electronic structure using time-resolved UPS has also been discussed.展开更多
Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of re...Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of reverse flotation of hematite are poor in presence of siderite using fatty acid as collector, starch as depressant of iron minerals and calcium ion as activator of quartz at strong alkaline pH. In this work, the effect of siderite on reverse anionic flotation of quartz from hematite was investigated. The effect mechanism of siderite on reverse flotation of hematite was studied by solution chemistry, ultraviolet spectrophotometry(UV) and Fourier transform infrared spectroscopy(FTIR). It was observed that siderite had strong depressive effect on quartz in flotation using sodium oleate as collector, corn starch as depressant of iron minerals and calcium chloride as activator of quartz at strong alkaline pH. The starch was adsorbed onto calcium carbonate by chemical reaction which was formed by CO^(2-)_3 from siderite dissolution and Ca^(2+) from calcium chloride as activator of quartz and precipitated on the surface of quartz, which resulted in improving the hydrophilic ability of quartz.展开更多
Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z...Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z=86, 75, 74, 69, 57, 46, 45, 44, 41, 30, 28, and 18 from isoleucine are observed in the mass spectrum at the photon energy of 13 eV. From the photoionization efficiency curves, appearance energies for the principal fragment ions CsH12N+ (rn/z=86), C2H5NO2+ (m/z=75), C5H9+ (rn/z=-69), C4H9+ (m/z=57), and CH4N+ (m/z=30) are determined to be 8.844-0.07, 9.254-0.06, 10.20-4-0.12, 9.254-0.10, and 11.05+0.07 eV, respectively, and possible formation pathways are established in detail by the calculations at the B3LYP/6-31++G(d, p) levels. These proposed channels include simple bond cleavage reactions as well as reactions involving intermediates and transition structures. The experimental and computational appearance energies or barriers are in good agreement.展开更多
The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the...The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin fihn of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at -230 and -380 nm are obviously observed. The bands are assigned as the contacted ion pairs [CuCl3(H2O)n]- or [CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of [CuCl3(H2O)n]- or [CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spec- troscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.展开更多
The allyl radical has been observed in a low-pressure premixed gasoline/oxygen/argon flame by using tunable vacuum ultraviolet photoionization mass spectrometry, The ionization potential of the allyl radical is derive...The allyl radical has been observed in a low-pressure premixed gasoline/oxygen/argon flame by using tunable vacuum ultraviolet photoionization mass spectrometry, The ionization potential of the allyl radical is derived to be (8.13 ±0.02) eV from photoionization efficiency curve, In addition, a high level ab initzo Gaussian-3 (G3) method was used to calculate the energies of tile radical and its cation. The calculated adiabatic ionization potential is 8.18 eV, which is in excellent agreement with the experimental value. The result is helpful for identifying the allyl radical formed from other flames and for understanding the mechanism of soot formation.展开更多
Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isom...Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isomers and to assign the observed spectral features. The bands at 2975 and 2949 cm-1 were assigned to the antisymmetric C-H stretching and the band at 2823 cm-1 to the symmetric C-H stretching, respectively. The 2739 cm-1 band was due to the CH3 bending overtone, which disappeared at low IR laser power of 1 mJ/mm2. The extra band at 2773 cm-1 could be due to Fermi resonance behavior of the light isotopologue, these are often close in energy and can strongly mix through cubic terms in the potential function. Experimental and theoretical results indicate the likely coexistence of multiple structures. The peak widths of IR spectra of neutral trimethylamine dimer are not significantly affected by the structural transformation, allowing the stretching modes to be well resolved.展开更多
An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary ...An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.展开更多
The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift ...The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.展开更多
As a powerful and sensitive tool for the characterization of zeolite building units,UV Raman spectroscopy has been used to monitor interzeolite transformation from FAU to CHA and MFI zeolites.The results show that the...As a powerful and sensitive tool for the characterization of zeolite building units,UV Raman spectroscopy has been used to monitor interzeolite transformation from FAU to CHA and MFI zeolites.The results show that the behavior of double 6-membered rings(D6Rs)in the FAU zeolite framework plays an important role during the formation of the target product in the interzeolite transformation.For the transformation of FAU to CHA,because both zeolites contain the same D6R units,direct transformation occurs,in which the D6Rs were largely unchanged.In contrast,for the transformation of FAU to MFI,the D6Rs can be divided into two single 6-membered rings(S6Rs),which further assembled into the MFI structure.In this crystallization,5-membered rings(5Rs)are only observed in the MFI framework formation,suggesting that the basic building units in the transformation of FAU to MFI are S6Rs rather than 5Rs.These insights will be helpful for further understanding of the interzeolite transformation.展开更多
文摘Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.
文摘Aim To study the reaction mechanism between gatifloxacin and bovine serumalbumin (BSA) at different pHs. Methods Fluorescence spectra and UV absorbance spectra were used.Results The binding constants were determined from a double reciprocal Lineweaver-Burk curves atdifferent pHs. The binding distance r under normal physiological condition was obtained according toFoster theory of non-radiative energy transfer. The binding force between gatifloxacin and BSA wasinferred by thermody-namical coordination. Conclusion The interaction between gatifloxacin and BSAseems to be strong and the main binding force is electrostatic force.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
基金The Ph.D.Programs Foundation of Ministry of Educa-tion of China(No.20030286012)the High Technology Research and De-velopment Program of Jiangsu Province(No.BG2005034)
文摘Two new diarylamine-substituted 1, 8-naphthalimide derivatives are synthesized by Cu I/18-crown-6/K2CO3 catalyst system and characterized by Fourier transform infrared (FT- IR), ^1H-NMR and elemental analyses. The UV-vis absorption and photoluminescent (PL)spectra of the systems in n-hexane, tetrahydrofuran(THF), and CH2Cl2 are investigated. These naphthalimide molecules have an absorption band centered at about 450 nm, which is assigned to an intramolecular chargetransfer (ICT)transition, and they emit light at 492, 501 nm in a nonpolar solvent such as n-hexane, and at 600, 620 nm in a polar solvent such as CH2Cl2. From the Lippert-Mataga equation, the difference of the dipole moment between the excited state and the ground state is estimated to be 9.2 and 9.8 D for 4- ( diphenylamine )-N-( 2-methoxyphenyl )-1, 8-naphthalimide ( DMN-1 ) and 4-( 2-naphthylphenylamine )-N-( 2- methoxyphenyl)-1, 8-naphthalimide (DMN-2), respectively. This large change in the dipole moment upon excitation is typical for photoinduced ICT processes.
基金Project(50925417)supported by the National Funds for Distinguished Young Scientist,ChinaProject(2012BAC09B04)supported by the National Key Technology Research and Development Program,China+2 种基金Project supported by the Post-doctoral Program of Central South University,ChinaProjects(31100082,61171061)supported by the National Natural Science Foundation of ChinaProject(2012SK4028)supported by the Science and Technology Program of Hunan Province,China
文摘The taxonomy characteriazation and cadmium (Cd) biosorption of the high Cd-resistant fungus M1 were investigated. The internal transcribed spacers (ITS) region and β-tubulin genes of the strain were amplified, sequenced and analyzed by molecular biology technology. The Cd biosorption assay was performed by shaking flask. Fourier transform infrared spectroscopy was used to analyze the mycelium. The similarity of gene sequences and phylogenetic trees show the very close relation between the strain and Paecilomyces lilacinus, and the fungus M1 was identified as P. Lilacinus. The initial pH 6 and Cd concentration about 100 mg/L are optimum. Zn and Mn have a little effect on the Cd biosorption of the strain, while Cu and Pb present obvious effects. FTIR analysis shows that the fungus adsorbs Cd by esters, anhydride, and amide. With the preferable absorption capacity, fungus M1 is considered to have good prospects in bioremediation.
文摘[Objective] The aim was to isolate a prodigiosin producing strain and study its pigment fractions.[Method] Red pigment-producing bacteria was identified by physiological and biochemical characteristics after isolation in plate.By using column chromatography and thin-layer chromatography,pigment fractions were separated and purified from the extractives of the strain after fermentation in flask,and then pigment fractions were analyzed via UV-Vis and LC/MS.[Result] A red pigment-producing Serratia marcescens strain NS-17 sampled from soil of Nanchang was isolated and identified.2 pigment fractions showing similar UV-Vis and LC/MS characters were separated and purified,the characters of fraction 1 were identical to those of prodigiosin,while fraction 2 showed a special UV-Vis absorption spectrum that had not been reported.[Conclusion] A prodigiosin-producing Serratia marcescens strain NS-17 and its 2 pigment fractions were isolated.
基金This work was supported by the National Natural Science Foundation of China (No.41005017), the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ201121), Jiangsu Provincial Natural Science Foundation of China (No.BK2011829), and the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation. The support of the Groupement de Recherche International SAMIA between CNRS (National Center for Scientific Research, France), RFBR (Russian Foundation for Basic Research, Russia), and CAS (Chinese Academy of Sciences, China) is acknowledged. We thank Dr. Albert A. Ruth at university college cork for the helpful discussion on the Xe lamp source based IBBCEAS.
文摘Chlorine dioxide (OC10) is an important indicator for Cl-activation. The monitoring of OC10 appears to be crucial for understanding the chemistry of Cl-initialed oxidation and its impact on air quality in polluted coastal regions and industrialized areas. We report the development of a Xe arc lamp based near-ultraviolet (335-375 nm) incoherent broad- band cavity enhanced absorption spectroscopy (IBBCEAS) spectrometer for quantitative assessment of OC10 in an atmospheric simulation chamber. The important intermediate compound CH20, and other key atmospheric trace species (NO2) were also simultaneously measured. The instrumental performance shows a strong potential of this kind of IBBCEAS instrument for field and laboratory studies of atmospheric halogen chemistry.
基金This work is supported by the National. Natural Science Foundation of China (No.51106146, No.51036007, No.U1232127), the China Postdoctoral Science Foundation (No.20100480047 and No.201104326), the Chinese Universities Scientific Fund (No.WK2310000010), the Anhui Science & Technology Department (No.l1040606Q49), and the Chinese Academy of Sciences.
文摘The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 species, especially several radicals and isomers, were detected and identified from the measurements of photoionization efficiency (PIE) spectra. Based on the mass spectrometric analysis, the characteristics of n-butane and i-butane pyrolysis were discussed, which provided experimental evidences for the discussion of decomposition pathways of butane isomers. It is concluded that the isomeric structures of n-butane and i-butane have strong influence on their main decomposition pathways, and lead to dramatic differences in their mass spectra and PIE spectra such as the different dominant products and isomeric structures of butene products. Furthermore, compared with n-butane,i-butane can produce strong signals of benzene at low temperature in its pyrolysis due to the enhanced formation of benzene precursors like propargyl and C4 species, which provides experimental clues to explain the higher sooting tendencies of iso-alkanes than n-alkanes.
文摘Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the valence band maximum of TiO2, preventing the hole transfer. To study the level alignment of this system, electronic structure of methanol covered TiO2(110) surface has been measured by ultraviolet photoelectron spectroscopy and the molecular orbitals of adsorbed methanol have been clearly identified. The results indicate the weak interaction between methanol and TiO2 substrate. The static electronic structure also suggests the mismatch of the energy levels. These static experiments have been performed without band gap excitation which is the prerequisite of a photocatalytie process. Future study of the transient electronic structure using time-resolved UPS has also been discussed.
基金Project(51374079) supported by the National Natural Science Foundation of China
文摘Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of reverse flotation of hematite are poor in presence of siderite using fatty acid as collector, starch as depressant of iron minerals and calcium ion as activator of quartz at strong alkaline pH. In this work, the effect of siderite on reverse anionic flotation of quartz from hematite was investigated. The effect mechanism of siderite on reverse flotation of hematite was studied by solution chemistry, ultraviolet spectrophotometry(UV) and Fourier transform infrared spectroscopy(FTIR). It was observed that siderite had strong depressive effect on quartz in flotation using sodium oleate as collector, corn starch as depressant of iron minerals and calcium chloride as activator of quartz at strong alkaline pH. The starch was adsorbed onto calcium carbonate by chemical reaction which was formed by CO^(2-)_3 from siderite dissolution and Ca^(2+) from calcium chloride as activator of quartz and precipitated on the surface of quartz, which resulted in improving the hydrophilic ability of quartz.
基金V. ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.10875126 and No.10979048) and the Specialized Research Fund for the Doctoral Program of Higher Education, SRF for ROCS, SEM.
文摘Vacuum ultraviolet photon-induced ionization and dissociation of isoleucine are investi- gated with synchrotron radiation photoionization mass spectroscopy and theoretical cal- culations. The main fragment ions at m/z=86, 75, 74, 69, 57, 46, 45, 44, 41, 30, 28, and 18 from isoleucine are observed in the mass spectrum at the photon energy of 13 eV. From the photoionization efficiency curves, appearance energies for the principal fragment ions CsH12N+ (rn/z=86), C2H5NO2+ (m/z=75), C5H9+ (rn/z=-69), C4H9+ (m/z=57), and CH4N+ (m/z=30) are determined to be 8.844-0.07, 9.254-0.06, 10.20-4-0.12, 9.254-0.10, and 11.05+0.07 eV, respectively, and possible formation pathways are established in detail by the calculations at the B3LYP/6-31++G(d, p) levels. These proposed channels include simple bond cleavage reactions as well as reactions involving intermediates and transition structures. The experimental and computational appearance energies or barriers are in good agreement.
文摘The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin fihn of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at -230 and -380 nm are obviously observed. The bands are assigned as the contacted ion pairs [CuCl3(H2O)n]- or [CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of [CuCl3(H2O)n]- or [CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spec- troscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.
基金This work Was supported by the Knowledge Innovation funding of CAS and the Natural Science Foundation of China(NSFC No.20473081).
文摘The allyl radical has been observed in a low-pressure premixed gasoline/oxygen/argon flame by using tunable vacuum ultraviolet photoionization mass spectrometry, The ionization potential of the allyl radical is derived to be (8.13 ±0.02) eV from photoionization efficiency curve, In addition, a high level ab initzo Gaussian-3 (G3) method was used to calculate the energies of tile radical and its cation. The calculated adiabatic ionization potential is 8.18 eV, which is in excellent agreement with the experimental value. The result is helpful for identifying the allyl radical formed from other flames and for understanding the mechanism of soot formation.
文摘Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral trimethylamine dimer were mea- sured in the 2500-3800 cm-1 region. Quantum chemical calculations were performed to identify the structure of the low-lying isomers and to assign the observed spectral features. The bands at 2975 and 2949 cm-1 were assigned to the antisymmetric C-H stretching and the band at 2823 cm-1 to the symmetric C-H stretching, respectively. The 2739 cm-1 band was due to the CH3 bending overtone, which disappeared at low IR laser power of 1 mJ/mm2. The extra band at 2773 cm-1 could be due to Fermi resonance behavior of the light isotopologue, these are often close in energy and can strongly mix through cubic terms in the potential function. Experimental and theoretical results indicate the likely coexistence of multiple structures. The peak widths of IR spectra of neutral trimethylamine dimer are not significantly affected by the structural transformation, allowing the stretching modes to be well resolved.
基金Projects(20772101,50473046) supported by the National Natural Science Foundation of ChinaProject(2007FJ3017) supported by the Hunan Provincial Science Foundation, ChinaProject(07C764) supported by the Science Foundation of the Education Department of Hunan Province,China
文摘An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.
基金supported by the Natural Science Foundation of Qingdao(No.04-2-JZ-110).
文摘The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.
基金supported by the National Key R&D Program of China(2017YFB0702800)the National Natural Science Foundation of China(2152780065,91634201 and 21720102001)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB17000000)~~
文摘As a powerful and sensitive tool for the characterization of zeolite building units,UV Raman spectroscopy has been used to monitor interzeolite transformation from FAU to CHA and MFI zeolites.The results show that the behavior of double 6-membered rings(D6Rs)in the FAU zeolite framework plays an important role during the formation of the target product in the interzeolite transformation.For the transformation of FAU to CHA,because both zeolites contain the same D6R units,direct transformation occurs,in which the D6Rs were largely unchanged.In contrast,for the transformation of FAU to MFI,the D6Rs can be divided into two single 6-membered rings(S6Rs),which further assembled into the MFI structure.In this crystallization,5-membered rings(5Rs)are only observed in the MFI framework formation,suggesting that the basic building units in the transformation of FAU to MFI are S6Rs rather than 5Rs.These insights will be helpful for further understanding of the interzeolite transformation.