图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图...图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。展开更多
图像融合技术是指从不同的源图像中提取并融合互补的信息,生成一幅信息量更丰富、对后续高级视觉任务提供足够支持的图像.红外与可见光图像融合(Infrared and Visible Image Fusion,IVIF)是图像融合领域的一个重要分支.近年来,深度学习...图像融合技术是指从不同的源图像中提取并融合互补的信息,生成一幅信息量更丰富、对后续高级视觉任务提供足够支持的图像.红外与可见光图像融合(Infrared and Visible Image Fusion,IVIF)是图像融合领域的一个重要分支.近年来,深度学习技术在视觉计算领域表现出了良好的性能,尤其是基于自编码器、卷积神经网络、生成对抗网络等几种基于深度学习的IVIF技术得到了蓬勃发展.为此,对基于深度学习的IVIF算法的方法、数据集和评估指标等进行了总结和阐述;通过大量的实验,进行定性和定量的结果分析,对比了各类基于深度学习IVIF算法的性能;最后,讨论了该领域未来发展的一些前景和研究方向.展开更多
文摘图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。
文摘图像融合技术是指从不同的源图像中提取并融合互补的信息,生成一幅信息量更丰富、对后续高级视觉任务提供足够支持的图像.红外与可见光图像融合(Infrared and Visible Image Fusion,IVIF)是图像融合领域的一个重要分支.近年来,深度学习技术在视觉计算领域表现出了良好的性能,尤其是基于自编码器、卷积神经网络、生成对抗网络等几种基于深度学习的IVIF技术得到了蓬勃发展.为此,对基于深度学习的IVIF算法的方法、数据集和评估指标等进行了总结和阐述;通过大量的实验,进行定性和定量的结果分析,对比了各类基于深度学习IVIF算法的性能;最后,讨论了该领域未来发展的一些前景和研究方向.