Insulin resistance is the major feature of the metabolic syndrome and depends on insulin secretion and insulin sensitivity. In chronic hepatitis C, insulin resistance and type 2 diabetes mellitus are more often seen t...Insulin resistance is the major feature of the metabolic syndrome and depends on insulin secretion and insulin sensitivity. In chronic hepatitis C, insulin resistance and type 2 diabetes mellitus are more often seen than in healthy controls or chronic hepatitis B patients. Hepatitis C virus (HCV) infection promotes insulin resistance, mainly by increased TNF production together with enhancement of suppressor of cytokine (SOC-3); both events block PI3K and Akt phosphorylation. Two types of insulin resistance could be found in chronic hepatitis C patients'. "viral" and "metabolic" insulin resistance. Insulin resistance in chronic hepatitis C is relevant because it promotes steatosis and fibrosis. The mechanisms by which insulin resistance promotes fibrosis progression include: (1) steatosis, (2) hyperleptinemia, (3) increased TNF production, (4) impaired expression of PPARy receptors. Lastly, insulin resistance has been found as a common denominator in patients difficult-to-treat like cirrhotics, overweight, HIV coinfected and Afro-American. Insulin resistance together with fibrosis and genotype has been found to be independently associated with impaired response rate to peginterferon plus ribavirin. Indeed, in genotype 1, the sustained response rate was twice (60%) in patients with HOMA ≤ 2 than patients with HOMA 〉 2. In experiments carried out on Huh-7 cells transfected by full length HCVRNA, interferon alpha blocks HCV replication. However, when insulin (at doses of 128 μU/mL, similar that seen in the hyperinsulinemic state) was added to interferon, the ability to block HCV replication disappeared, and the PKR synthesis was abolished. In summary, hepatitis C promotes insulin resistance and insulin resistance induces interferon resistance, steatosis and fibrosis progression.展开更多
A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the...A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the formation and decomposition of active cellulose (AC) and several main organic compounds, such as levoglucosan (LG), hydroxyl-acetaldehyde (HAA), acetol and furfural etc. During pryolysis, the temperature rise of cellulose can be divided into three stages. In the second stage, cellulose undergoes a main decomposition process in which the reaction temperature remains rather low because of the endothermic cracking of glucosidic bond of AC during the formation of LG. The components density of bio-oil, including LG and other competitive compounds, increased rapidly with the increase of temperature during the first stage. However, in the main decomposition process, LG density in bio-oil had an obvious decrease, while the competitive products appeared to increase gradually, which means the ring-opening and reforming reaction of pyranoid ring are superior to LG formation in high temperature.The secondary reaction of volatile components occurs largely in gaseous phase rather than in the solid phase. Short residence time of volatile materials in high temperature region will be advantageous to a high production of LG,which may otherwise decompose quickly under high temperature. An optimum yield of LG could be obtained when radiant source temperature is in the range of 730---920K and gas residence time is less than 1 s. In addition, the reaction temperature has a stronger effect than gas residence time on the formation of HAA, acetol, formaldehyde and furfural etc.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose...The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis展开更多
Waterborne nanoscale carbon black dispersion (NCBD) was widely used in inkjet printing, spun.dyeing fibers and coloration fabrics. In this paper, NCBD was prepared using sodium carboxymethyl cellulose (CMC) as dis...Waterborne nanoscale carbon black dispersion (NCBD) was widely used in inkjet printing, spun.dyeing fibers and coloration fabrics. In this paper, NCBD was prepared using sodium carboxymethyl cellulose (CMC) as dispersant. Effects of CMC viscosity, ultrasonic time and oxidation with hydrogen peroxide on carbon black (CB) particle size were discussed. The results showed that CB particle size decreased by mechanical agitation while it Increased by ultrasonic with the increase of CMC viscosity. Uitrasonk is a more effective method to disperse CB particles than that of mechanical agitation. CB particle size lbviously decreased with itcreasing ultrasonic time and arrived at about 160 nm for 60min.In addition,oxidation with 2 mol/L of H2O2 and 0.2wt% of CMC300 reduced CB particle size to 160nm at 90℃ for 2.5h.展开更多
Purpose: To extract protein, decrease the cellulose and facilitate the digestion and absorption of brewers' spent grain by animal. Topic: Discuss and optimize the hydrolysis conditions of the combined enzymatic hyd...Purpose: To extract protein, decrease the cellulose and facilitate the digestion and absorption of brewers' spent grain by animal. Topic: Discuss and optimize the hydrolysis conditions of the combined enzymatic hydrolysis by Novozymes. Method: The fresh brewers' spent grain was firstly dried, smashed and sifted. Then as indicators of the protein extraction rate in the enzyme solution and the content of cellulose in the index, the parameters of enzymatic hydrolysis, such as the solid-liquid ratio, reaction temperature, pH, enzyme dosage and reaction time, were investigated in detailed. After hydrolysis, the brewers' spent grain was put in the boiling water bath for inactivation for 15 minutes, and centrifuged, the supernatants were volume to 100 mL and the protein content was measured. After the precipitate was dried, the cellulose content was also measured. Achievements: The optimized conditions were with temperature of 50 ℃, pH 6.5, enzyme amount of 30 mg for Novozymes enzyme and 2.5 h for reaction time. Under these conditions, the protein extraction rate in the enzyme reaction reached 41.82%, and the cellulose content reached 13.90%, the degradation rate of cellulose was 18.86%.展开更多
Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB ...Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB is 48 h, the COD removal rate reaches 72% and HRT of MBR is 20 h, COD removal rate is between 80.8% and 87.5%. The effluent COD concentration stabilized at 301- 537 mg/L, it indicates that the MBR system has a strong ability to resist impact load.展开更多
An immobilized cell membrane bioreaction system was developed to promote cell stability. The hollow fiber membrane bioreactor with immobilized Pseudomonas putida cells, operating in continual repeated batch operation ...An immobilized cell membrane bioreaction system was developed to promote cell stability. The hollow fiber membrane bioreactor with immobilized Pseudomonas putida cells, operating in continual repeated batch operation mode was used for producing D-p-hydroxyphenylglycine from DL-5-p-hydroxyphenyl hydantoin. The concentration of N-carbamyl-D-p-hydroxyphenylglycine and D-p-hydroxyphenylglycine in the efflux was analyzed by high performance liquid chromatography at different intervals.展开更多
Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA...Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA and (B) DMF/K2CO3) at various reaction conditions and using microwave radiation with controlled power as heating source. The obtained water-soluble VILA-CMC derivatives were characterized by FT-IR spectroscopy and their surface-active properties evaluated. All derivatives showed a very low esterification extent and moderate surface tension lowering effect. Nevertheless, they exhibited significant emulsifying efficiency comparable to that of the synthetic surfactant, Tween 20. The results suggested that suitable surface-active VILA-CMC derivatives can be prepared under microwave heating at low microwave power and reaction times in the range of few minutes, which represents a great advantage in comparison to transesterification reactions lasting up to 6 h at conventional heating.展开更多
We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-...We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-assembled mesoporous nanosheets and appeared as soft and hydrophilic foam.Ultrafine Pd NPs(∼6 nm)with high-loading(9.6 wt%)were in situ grown on these mesoporous nanosheets,and their dense spatial distributions were likely to generate nano-confinement catalytic effects on the reactants.Consequently,the CNF-confined Pd NPs(CNF-Pd)exhibited an enhanced room-temperature catalytic activity on the model reaction of 4-nitrophenol hydrogenation with a highest rate constant of 8.8×10^−3 s^−1 and turnover frequency of 2640 h The CNF Pd catalyst possessed good chemical stability and recyclability in aqueous media which could be reused for at least six cycles without losing activity.Moreover,chemoselective reduction of 3 nitrostyrene was achieved with high yield(80%–98%)of 3-aminostyrene in alcohol/water cosolvent.Overall,this work demonstrates a positive nanoconfinement effect of CNFs for developing stable and recyclable metal NP catalysts.展开更多
Enzymes involved in collagen biosynthesis, including lysyl oxidase (LOX), have been proposed as potential therapeutic targets for idio- pathic pulmonary fibrosis. LOX expression is significantly upregulated in bleom...Enzymes involved in collagen biosynthesis, including lysyl oxidase (LOX), have been proposed as potential therapeutic targets for idio- pathic pulmonary fibrosis. LOX expression is significantly upregulated in bleomycin (BLM)-induced lung fibrosis, and knockdown of LOX expression or inhibition of LOX activity alleviates the lung fibrosis. Unexpectedly, treatment of the mice with LOX inhibitor at the inflammatory stage, but not the fibrogenic stage, efficiently reduces collagen deposition and normalizes lung architecture. Inhibition of LOX impairs inflammatory ceU infiltration, TGF-β signaling, and myofibroblast accumulation. Furthermore, ectopic expres- sion of LOX sensitizes the fibrosis-resistant Balb/c mice to BLM-induced inflammation and lung fibrosis. These results suggest that LOX is indispensable for the progression of BLM-induced experimental lung fibrosis by aggravating the inflammatory response and subse- quent fibrosis process after lung injury.展开更多
The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that...The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to sobstrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50℃ for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents ofp-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.展开更多
基金Supported by a grant of PAI-CTS-532 from Junta de Andalucía, Andalucía, Spain
文摘Insulin resistance is the major feature of the metabolic syndrome and depends on insulin secretion and insulin sensitivity. In chronic hepatitis C, insulin resistance and type 2 diabetes mellitus are more often seen than in healthy controls or chronic hepatitis B patients. Hepatitis C virus (HCV) infection promotes insulin resistance, mainly by increased TNF production together with enhancement of suppressor of cytokine (SOC-3); both events block PI3K and Akt phosphorylation. Two types of insulin resistance could be found in chronic hepatitis C patients'. "viral" and "metabolic" insulin resistance. Insulin resistance in chronic hepatitis C is relevant because it promotes steatosis and fibrosis. The mechanisms by which insulin resistance promotes fibrosis progression include: (1) steatosis, (2) hyperleptinemia, (3) increased TNF production, (4) impaired expression of PPARy receptors. Lastly, insulin resistance has been found as a common denominator in patients difficult-to-treat like cirrhotics, overweight, HIV coinfected and Afro-American. Insulin resistance together with fibrosis and genotype has been found to be independently associated with impaired response rate to peginterferon plus ribavirin. Indeed, in genotype 1, the sustained response rate was twice (60%) in patients with HOMA ≤ 2 than patients with HOMA 〉 2. In experiments carried out on Huh-7 cells transfected by full length HCVRNA, interferon alpha blocks HCV replication. However, when insulin (at doses of 128 μU/mL, similar that seen in the hyperinsulinemic state) was added to interferon, the ability to block HCV replication disappeared, and the PKR synthesis was abolished. In summary, hepatitis C promotes insulin resistance and insulin resistance induces interferon resistance, steatosis and fibrosis progression.
基金Supported by the National Natural Science Foundation of China (No. 50176046)Guangdong Government Natural Science Foundation (No. 003045)The experiments in the paper were finished in Zhejiang University.
文摘A detailed mechanism analysis of cellulose pyrolysis was carried out according to the previous experimental results. On the basis of the Brodio-Shafizadeh model, a modified two-stage model was proposed to simulate the formation and decomposition of active cellulose (AC) and several main organic compounds, such as levoglucosan (LG), hydroxyl-acetaldehyde (HAA), acetol and furfural etc. During pryolysis, the temperature rise of cellulose can be divided into three stages. In the second stage, cellulose undergoes a main decomposition process in which the reaction temperature remains rather low because of the endothermic cracking of glucosidic bond of AC during the formation of LG. The components density of bio-oil, including LG and other competitive compounds, increased rapidly with the increase of temperature during the first stage. However, in the main decomposition process, LG density in bio-oil had an obvious decrease, while the competitive products appeared to increase gradually, which means the ring-opening and reforming reaction of pyranoid ring are superior to LG formation in high temperature.The secondary reaction of volatile components occurs largely in gaseous phase rather than in the solid phase. Short residence time of volatile materials in high temperature region will be advantageous to a high production of LG,which may otherwise decompose quickly under high temperature. An optimum yield of LG could be obtained when radiant source temperature is in the range of 730---920K and gas residence time is less than 1 s. In addition, the reaction temperature has a stronger effect than gas residence time on the formation of HAA, acetol, formaldehyde and furfural etc.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
基金Supported by the National Natural Science Foundation of China (20976130 and 20806057), National Science and Technology Pillar Program of China (2007BAD42B02), Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-08-0386), and the R&D program of Tianjin Binhai New Area (2010-BK17C004)..
文摘The reactions of exo-cellulase (cellobiohydrolase, CBH) and endo-cellulase (endoglucanase, EG) were investigated by analyzing the insoluble residues of microcrystalline cellulose (MCC) and filter paper cellulose (FPC) during enzymatic hydrolysis. Molecular parameters including molecular weight and its distribution, degree of polymerization, and radii of gyration were measured by size exclusion chromatography coupled with multi-angle laser light scattering. No significant change in MCC chains was found during the whole reaction period, indicating that CBH digestion follows a layer-by-layer solubilization manner. This reaction mode might be the major reason for slow enzymatic hydrolysis of cellulose. On the other hand, the degree of polymerization of FPC chains decreases rapidly in the initial reaction, indicating that EG digestion follows a random scission manner, which may create new ends for CBH easily. The slopes of the conformation plots for MCC and FPC increase gradually, indicating stronger chain stiffness of cellulose during hvdrolvsis
基金Supported by National Natural Science Foundation of China( No.50173012) and863Hi-tech Research and Development Program ofChina (2002AA327120)
文摘Waterborne nanoscale carbon black dispersion (NCBD) was widely used in inkjet printing, spun.dyeing fibers and coloration fabrics. In this paper, NCBD was prepared using sodium carboxymethyl cellulose (CMC) as dispersant. Effects of CMC viscosity, ultrasonic time and oxidation with hydrogen peroxide on carbon black (CB) particle size were discussed. The results showed that CB particle size decreased by mechanical agitation while it Increased by ultrasonic with the increase of CMC viscosity. Uitrasonk is a more effective method to disperse CB particles than that of mechanical agitation. CB particle size lbviously decreased with itcreasing ultrasonic time and arrived at about 160 nm for 60min.In addition,oxidation with 2 mol/L of H2O2 and 0.2wt% of CMC300 reduced CB particle size to 160nm at 90℃ for 2.5h.
文摘Purpose: To extract protein, decrease the cellulose and facilitate the digestion and absorption of brewers' spent grain by animal. Topic: Discuss and optimize the hydrolysis conditions of the combined enzymatic hydrolysis by Novozymes. Method: The fresh brewers' spent grain was firstly dried, smashed and sifted. Then as indicators of the protein extraction rate in the enzyme solution and the content of cellulose in the index, the parameters of enzymatic hydrolysis, such as the solid-liquid ratio, reaction temperature, pH, enzyme dosage and reaction time, were investigated in detailed. After hydrolysis, the brewers' spent grain was put in the boiling water bath for inactivation for 15 minutes, and centrifuged, the supernatants were volume to 100 mL and the protein content was measured. After the precipitate was dried, the cellulose content was also measured. Achievements: The optimized conditions were with temperature of 50 ℃, pH 6.5, enzyme amount of 30 mg for Novozymes enzyme and 2.5 h for reaction time. Under these conditions, the protein extraction rate in the enzyme reaction reached 41.82%, and the cellulose content reached 13.90%, the degradation rate of cellulose was 18.86%.
文摘Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB is 48 h, the COD removal rate reaches 72% and HRT of MBR is 20 h, COD removal rate is between 80.8% and 87.5%. The effluent COD concentration stabilized at 301- 537 mg/L, it indicates that the MBR system has a strong ability to resist impact load.
文摘An immobilized cell membrane bioreaction system was developed to promote cell stability. The hollow fiber membrane bioreactor with immobilized Pseudomonas putida cells, operating in continual repeated batch operation mode was used for producing D-p-hydroxyphenylglycine from DL-5-p-hydroxyphenyl hydantoin. The concentration of N-carbamyl-D-p-hydroxyphenylglycine and D-p-hydroxyphenylglycine in the efflux was analyzed by high performance liquid chromatography at different intervals.
文摘Polymeric biosurfactants were prepared by the transesterification reaction between vinyl laurate (VILA) and carboxymethylcellulose (CMC). The reaction was performed in two different reaction media ((A) DMF/pTSA and (B) DMF/K2CO3) at various reaction conditions and using microwave radiation with controlled power as heating source. The obtained water-soluble VILA-CMC derivatives were characterized by FT-IR spectroscopy and their surface-active properties evaluated. All derivatives showed a very low esterification extent and moderate surface tension lowering effect. Nevertheless, they exhibited significant emulsifying efficiency comparable to that of the synthetic surfactant, Tween 20. The results suggested that suitable surface-active VILA-CMC derivatives can be prepared under microwave heating at low microwave power and reaction times in the range of few minutes, which represents a great advantage in comparison to transesterification reactions lasting up to 6 h at conventional heating.
基金the National Natural Science Foundation of China(31925028 and 31670583)the Special Project for Double First-Class-Cultivation of Innovative Talents(000/41113102)。
文摘We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-assembled mesoporous nanosheets and appeared as soft and hydrophilic foam.Ultrafine Pd NPs(∼6 nm)with high-loading(9.6 wt%)were in situ grown on these mesoporous nanosheets,and their dense spatial distributions were likely to generate nano-confinement catalytic effects on the reactants.Consequently,the CNF-confined Pd NPs(CNF-Pd)exhibited an enhanced room-temperature catalytic activity on the model reaction of 4-nitrophenol hydrogenation with a highest rate constant of 8.8×10^−3 s^−1 and turnover frequency of 2640 h The CNF Pd catalyst possessed good chemical stability and recyclability in aqueous media which could be reused for at least six cycles without losing activity.Moreover,chemoselective reduction of 3 nitrostyrene was achieved with high yield(80%–98%)of 3-aminostyrene in alcohol/water cosolvent.Overall,this work demonstrates a positive nanoconfinement effect of CNFs for developing stable and recyclable metal NP catalysts.
基金This work was supported by the National Basic Research Program of China (2010CB912102 and 2010CB529703) and the National Natural Science Foundation of China (31190061, 31371408, and 81430067). G.G. is a scholar of the SA-SIBS Scholarship Program.
文摘Enzymes involved in collagen biosynthesis, including lysyl oxidase (LOX), have been proposed as potential therapeutic targets for idio- pathic pulmonary fibrosis. LOX expression is significantly upregulated in bleomycin (BLM)-induced lung fibrosis, and knockdown of LOX expression or inhibition of LOX activity alleviates the lung fibrosis. Unexpectedly, treatment of the mice with LOX inhibitor at the inflammatory stage, but not the fibrogenic stage, efficiently reduces collagen deposition and normalizes lung architecture. Inhibition of LOX impairs inflammatory ceU infiltration, TGF-β signaling, and myofibroblast accumulation. Furthermore, ectopic expres- sion of LOX sensitizes the fibrosis-resistant Balb/c mice to BLM-induced inflammation and lung fibrosis. These results suggest that LOX is indispensable for the progression of BLM-induced experimental lung fibrosis by aggravating the inflammatory response and subse- quent fibrosis process after lung injury.
基金Project (No. GBTA2009-04) supported by Technology Development Program for Agriculture and Fishery, Gyeongsangbuk-Do, Korea
文摘The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to sobstrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50℃ for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents ofp-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.