移动边缘计算(Mobile Edge Computing,MEC)将计算与存储资源部署到网络边缘,用户可将移动设备上的任务卸载到附近的边缘服务器,得到一种低延迟、高可靠的服务体验.然而,由于动态的系统状态和多变的用户需求,MEC环境下的计算卸载与资源...移动边缘计算(Mobile Edge Computing,MEC)将计算与存储资源部署到网络边缘,用户可将移动设备上的任务卸载到附近的边缘服务器,得到一种低延迟、高可靠的服务体验.然而,由于动态的系统状态和多变的用户需求,MEC环境下的计算卸载与资源分配面临着巨大的挑战.现有解决方案通常依赖于系统先验知识,无法适应多约束条件下动态的MEC环境,导致了过度的时延与能耗.为解决上述重要挑战,本文提出了一种新型的基于深度强化学习的计算卸载与资源分配联合优化方法(Joint computation Offloading and resource Allocation with deep Reinforcement Learning,JOA-RL).针对多用户时序任务,JOA-RL方法能够根据计算资源与网络状况,生成合适的计算卸载与资源分配方案,提高执行任务成功率并降低执行任务的时延与能耗.同时,JOA-RL方法融入了任务优先级预处理机制,能够根据任务数据量与移动设备性能为任务分配优先级.大量仿真实验验证了JOA-RL方法的可行性和有效性.与其他基准方法相比,JOA-RL方法在任务最大容忍时延与设备电量约束下能够在时延与能耗之间取得更好的平衡,且展现出了更高的任务执行成功率.展开更多
约束预测控制(Constrained model predictive control,CMPC)中,因约束的存在,优化过程中最优控制作用可能会在可行域的边界取值,也就是说会有一个或多个变量饱和,即约束边界效应.而过程控制中操纵变量饱和是我们不希望出现的.对此,首先...约束预测控制(Constrained model predictive control,CMPC)中,因约束的存在,优化过程中最优控制作用可能会在可行域的边界取值,也就是说会有一个或多个变量饱和,即约束边界效应.而过程控制中操纵变量饱和是我们不希望出现的.对此,首先基于稳态模型,对期望值位于可行域内时最优解必在期望值处达到给出证明;同时证明了期望值在可行域外时最优解可转化为期望值到可行域的投影.其次,针对变量在动态及稳态过程中饱和的情况提出了改善控制性能的措施—调整目标函数;终端约束的加入,为预测控制系统稳定性提供了保障.通过对包含约束的连续搅拌釜式反应器(Continuous stirred tank reactor,CSTR)系统进行仿真实验,验证了所提方法的正确性,并说明了对目标函数进行适当调整,可有效改善系统的控制性能.展开更多
文摘移动边缘计算(Mobile Edge Computing,MEC)将计算与存储资源部署到网络边缘,用户可将移动设备上的任务卸载到附近的边缘服务器,得到一种低延迟、高可靠的服务体验.然而,由于动态的系统状态和多变的用户需求,MEC环境下的计算卸载与资源分配面临着巨大的挑战.现有解决方案通常依赖于系统先验知识,无法适应多约束条件下动态的MEC环境,导致了过度的时延与能耗.为解决上述重要挑战,本文提出了一种新型的基于深度强化学习的计算卸载与资源分配联合优化方法(Joint computation Offloading and resource Allocation with deep Reinforcement Learning,JOA-RL).针对多用户时序任务,JOA-RL方法能够根据计算资源与网络状况,生成合适的计算卸载与资源分配方案,提高执行任务成功率并降低执行任务的时延与能耗.同时,JOA-RL方法融入了任务优先级预处理机制,能够根据任务数据量与移动设备性能为任务分配优先级.大量仿真实验验证了JOA-RL方法的可行性和有效性.与其他基准方法相比,JOA-RL方法在任务最大容忍时延与设备电量约束下能够在时延与能耗之间取得更好的平衡,且展现出了更高的任务执行成功率.
文摘约束预测控制(Constrained model predictive control,CMPC)中,因约束的存在,优化过程中最优控制作用可能会在可行域的边界取值,也就是说会有一个或多个变量饱和,即约束边界效应.而过程控制中操纵变量饱和是我们不希望出现的.对此,首先基于稳态模型,对期望值位于可行域内时最优解必在期望值处达到给出证明;同时证明了期望值在可行域外时最优解可转化为期望值到可行域的投影.其次,针对变量在动态及稳态过程中饱和的情况提出了改善控制性能的措施—调整目标函数;终端约束的加入,为预测控制系统稳定性提供了保障.通过对包含约束的连续搅拌釜式反应器(Continuous stirred tank reactor,CSTR)系统进行仿真实验,验证了所提方法的正确性,并说明了对目标函数进行适当调整,可有效改善系统的控制性能.