传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular ...传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular value decomposition, TSVD),并对二阶图像进行邻域拓展策略,将原图像的每个像素替换为广义标量。广义线性插值奇异值分解(tensorial linear interpolation singular value decomposition, TSVD-L)对广义标量进行线性插值处理,拓展阶数后的广义标量构成广义矩阵。以此为基础,通过不同阶数和尺寸的策略,将TSVD-L与传统算法SVD进行低秩近似重建,比较峰值信噪比结果,实验数据表明,在有限维交换半单代数之上的广义线性插值奇异值分解算法性能明显优于经典奇异值分解算法,且随着阶数的提升,TSVD-L的峰值信噪比完全优于SVD的峰值信噪比。同时TSVD-L比TSVD有一定的优越性。展开更多
文摘传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular value decomposition, TSVD),并对二阶图像进行邻域拓展策略,将原图像的每个像素替换为广义标量。广义线性插值奇异值分解(tensorial linear interpolation singular value decomposition, TSVD-L)对广义标量进行线性插值处理,拓展阶数后的广义标量构成广义矩阵。以此为基础,通过不同阶数和尺寸的策略,将TSVD-L与传统算法SVD进行低秩近似重建,比较峰值信噪比结果,实验数据表明,在有限维交换半单代数之上的广义线性插值奇异值分解算法性能明显优于经典奇异值分解算法,且随着阶数的提升,TSVD-L的峰值信噪比完全优于SVD的峰值信噪比。同时TSVD-L比TSVD有一定的优越性。