设G是赋范线性空间 E 的子集,x∈E,g_0∈G.称 g_0是 G 对 x 是 q(q>1)阶强唯一最佳逼近乃指:若存在常数 C=C(x)>0,满足‖x-g‖~q≥‖x-g_0‖~q+c‖g-g_0‖~q,(?)g∈G.(1)我们对所有满足(1)式的常数 C 上确界为 x 相对于 G 的强唯...设G是赋范线性空间 E 的子集,x∈E,g_0∈G.称 g_0是 G 对 x 是 q(q>1)阶强唯一最佳逼近乃指:若存在常数 C=C(x)>0,满足‖x-g‖~q≥‖x-g_0‖~q+c‖g-g_0‖~q,(?)g∈G.(1)我们对所有满足(1)式的常数 C 上确界为 x 相对于 G 的强唯一常数,记作 r(x).本文先获得:若 G 是 L_p 或 H^(k,p)(K≥0,2≤p≤∞)的弱拟凸(伪凸、拟凸)集,则 G 对 x∈L_p(H^(k,p))的最佳逼近具有 p 阶强唯一性;然后在一般赋范空间证明了 r(x)相对于 x 是上半连续的.展开更多
文摘设G是赋范线性空间 E 的子集,x∈E,g_0∈G.称 g_0是 G 对 x 是 q(q>1)阶强唯一最佳逼近乃指:若存在常数 C=C(x)>0,满足‖x-g‖~q≥‖x-g_0‖~q+c‖g-g_0‖~q,(?)g∈G.(1)我们对所有满足(1)式的常数 C 上确界为 x 相对于 G 的强唯一常数,记作 r(x).本文先获得:若 G 是 L_p 或 H^(k,p)(K≥0,2≤p≤∞)的弱拟凸(伪凸、拟凸)集,则 G 对 x∈L_p(H^(k,p))的最佳逼近具有 p 阶强唯一性;然后在一般赋范空间证明了 r(x)相对于 x 是上半连续的.