期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于组合深度学习的轨道交通短时进站客流预测模型
被引量:
4
1
作者
李淑庆
李伟
+1 位作者
刘耀鸿
马波
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期92-99,共8页
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷...
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷积神经网络(CNN)对多因素客流时间序列进行自动提取,在CNN网络中插入多个残差神经网络(ResNet)来加深网络深度,利用双向长短时记忆神经网络(BiLSTM)捕捉前后两个方向的客流时间序列特征并得到预测结果;以杭州市全网80个站点工作日的进站客流为例,验证了该模型的有效性。研究结果表明:与常用的几种模型相比,多因素CNN-ResNet-BiLSTM组合模型的均方根误差(E RMS)至少降低了8.50%,平均绝对误差(E MA)至少降低了6.74%,平均绝对百分比误差(E MPA)至少降低了6.52%。
展开更多
关键词
交通工程
短时客流预测
组合深度学习
轨道进站客流
下载PDF
职称材料
题名
基于组合深度学习的轨道交通短时进站客流预测模型
被引量:
4
1
作者
李淑庆
李伟
刘耀鸿
马波
机构
重庆交通大学交通运输学院
出处
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期92-99,共8页
基金
国家自然科学基金项目(52078070)
重庆交通大学研究生科研创新资助项目(CYS21355)。
文摘
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷积神经网络(CNN)对多因素客流时间序列进行自动提取,在CNN网络中插入多个残差神经网络(ResNet)来加深网络深度,利用双向长短时记忆神经网络(BiLSTM)捕捉前后两个方向的客流时间序列特征并得到预测结果;以杭州市全网80个站点工作日的进站客流为例,验证了该模型的有效性。研究结果表明:与常用的几种模型相比,多因素CNN-ResNet-BiLSTM组合模型的均方根误差(E RMS)至少降低了8.50%,平均绝对误差(E MA)至少降低了6.74%,平均绝对百分比误差(E MPA)至少降低了6.52%。
关键词
交通工程
短时客流预测
组合深度学习
轨道进站客流
Keywords
traffic engineering
short term passenger flow prediction
combined deep learning
rail transit inbound passenger flow
分类号
U293.13 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于组合深度学习的轨道交通短时进站客流预测模型
李淑庆
李伟
刘耀鸿
马波
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部