Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. ...Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.展开更多
As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequ...As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequently, which may have unnegligible influence on the aerostatic behavior of long-span suspension bridges. In this work, a method of advanced aerostatic analysis is presented firstly by considering the geometric nonlinearity, the nonlinear wind-structures and wind speed spatial non-uniformity. By taking the Runyang Bridge over the Yangtze River as example, effects of the nonlinear wind-structttre interaction, wind speed spatial non-uniformity, and the cable's wind load on the aerostatic behavior of the bridge are investigated analytically. The results showed that these factors all have important influence on the aerostatic behavior, and should be considered in the aerostatic analysis of long and particularly super long-span suspension bridges.展开更多
In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of t...In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of the symmetry element sequence combining with characteristic atom sequence.It is named the characteristic atom arranging structure,which can display the characteristic atoms at the lattice sites and the micro-inhomogeneity,besides the symmetry.Each characteristic atom has its own characters:neighboring configuration,potential energy,volume and electronic structure.The micro-inhomogeneity of alloy phases can be described by concentrations and short-range ordered parameters of characteristic atoms.The differences between the electronic structures of alloy phases and electronic structures of characteristic atoms in the alloy phases are also discussed.展开更多
An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicin...An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.展开更多
Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of...Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.展开更多
This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi ide...This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi identities and construct structure scalars. Using these scalars and evolution equations, the inhomogeneity factors of the system are evaluated. It is found that structure scalars related to double dual of Riemann tensor control the density inhomogeneity. Finally, we obtain exact solutions of homogenous isotropic and inhomogeneous anisotropic spheroid models. It turns out that homogenous solutions reduce to Schwarzschild type interior solutions for a spherical case. We conclude that homogenous models involve homogenous distribution of scalar field whereas inhomogeneous correspond to inhomogeneous sca/ar field.展开更多
Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomog...Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomogeneity.In the cold electron limit,the oscillatory shock wave becomes the ordinary shock wave.In the collisionless limit,the dominated equation becomes Kd V equation and the lower hybrid solitons arise.The amplitude of the nonlinear structure is depressed by the plasma inhomogeneity,but is hardly affected by the electron-neutral collision.展开更多
The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in in...The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.展开更多
基金jointly sponsored by the Special Program of Science and Technology Innovation of Tianjin Municipality ( 07FDZDSF02102 )the Geological Program of Mineral Resources Compensation of Tianjin Municipality,China
文摘Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.
基金Project (No. 502118) supported by the Natural Science Foundation of Zhejiang Province, China
文摘As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequently, which may have unnegligible influence on the aerostatic behavior of long-span suspension bridges. In this work, a method of advanced aerostatic analysis is presented firstly by considering the geometric nonlinearity, the nonlinear wind-structures and wind speed spatial non-uniformity. By taking the Runyang Bridge over the Yangtze River as example, effects of the nonlinear wind-structttre interaction, wind speed spatial non-uniformity, and the cable's wind load on the aerostatic behavior of the bridge are investigated analytically. The results showed that these factors all have important influence on the aerostatic behavior, and should be considered in the aerostatic analysis of long and particularly super long-span suspension bridges.
基金supported by the National Natural Science Foundation of China (Grant No 51071181)the National Nature Science Foundation of Hunan Province (Grant No 2010FJ4034)
文摘In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of the symmetry element sequence combining with characteristic atom sequence.It is named the characteristic atom arranging structure,which can display the characteristic atoms at the lattice sites and the micro-inhomogeneity,besides the symmetry.Each characteristic atom has its own characters:neighboring configuration,potential energy,volume and electronic structure.The micro-inhomogeneity of alloy phases can be described by concentrations and short-range ordered parameters of characteristic atoms.The differences between the electronic structures of alloy phases and electronic structures of characteristic atoms in the alloy phases are also discussed.
基金Supported by the Scientific Research Fund of Liaoning University of Technology of China under Grant No.X201319the Scientific Research Fund of Liaoning Provincial Education Department under Grant No.L2014242
文摘An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.
基金supported by the National Natural Science Foundation of China(U21A20284)Science and Technology Foundation of Guizhou Province(QKHZC20202Y037)+4 种基金the Science and Technology Innovation Program of Hunan Province(2020RC40052019RS1004)Innovation Mover Program of Central South University(2020CX007)National Research Foundation of Korea(NRF-2017R1A2B3004383)the China Scholarship Council(CSC)for the financial support(202006370306)。
文摘Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.
文摘This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi identities and construct structure scalars. Using these scalars and evolution equations, the inhomogeneity factors of the system are evaluated. It is found that structure scalars related to double dual of Riemann tensor control the density inhomogeneity. Finally, we obtain exact solutions of homogenous isotropic and inhomogeneous anisotropic spheroid models. It turns out that homogenous solutions reduce to Schwarzschild type interior solutions for a spherical case. We conclude that homogenous models involve homogenous distribution of scalar field whereas inhomogeneous correspond to inhomogeneous sca/ar field.
基金Supported by National Natural Science Foundation of China under Grant Nos.11405001,11147163Key Project of Outstanding Young Talents of Anhui Province under Grant No.gxyq ZD2016146the Foundation of Anhui Educational Commission of China under Grant Nos.KJ2014A046,KJ2013B059
文摘Nonlinear structures of lower hybrid wave in collision plasmas are studied using the two-fluid theory.The oscillatory shock wave is observed due to the effects of the electron-neutral collision and the density inhomogeneity.In the cold electron limit,the oscillatory shock wave becomes the ordinary shock wave.In the collisionless limit,the dominated equation becomes Kd V equation and the lower hybrid solitons arise.The amplitude of the nonlinear structure is depressed by the plasma inhomogeneity,but is hardly affected by the electron-neutral collision.
基金Acknowledgments This work was supported by Natural Science Fundamental Research Project of Jiangsu Colleges and Universities under Grant 11KJB510026, and National Science Foundation of P. R. China under Grants 11275007 and 81000639.
文摘The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.