准确高效的奶牛发情检测技术能够提高其受胎率、缩短胎间距,是改善奶牛繁殖效率和提高经济效益的重要手段。规模化、集约化养殖环境下,众多学术与科学研究证实奶牛行为方式和活动量是判断其是否发情的重要指标。目前常用奶牛行为决策方...准确高效的奶牛发情检测技术能够提高其受胎率、缩短胎间距,是改善奶牛繁殖效率和提高经济效益的重要手段。规模化、集约化养殖环境下,众多学术与科学研究证实奶牛行为方式和活动量是判断其是否发情的重要指标。目前常用奶牛行为决策方法主要是针对单点数据进行行为分类,而奶牛运动传感数据是按照时间顺序采集的多元时间序列数据,因此该文提出基于结构相似度的子序列段快速聚类算法(SC-SS,subsequence clustering based on structural similarity),首先利用加速度一阶差分值将奶牛运动动态时间序列传感数据划分成若干子序列段,然后计算子序列段加速度值、能量、标准方差等特征结构相似度;最后根据各个子序列的结构相似度进行快速聚类。试验数据分析对比表明,SC-SS较常用K-means算法具有更高的运行效率,可更有效地完成奶牛行为分类,提高奶牛发情检测的准确率。展开更多
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。
文摘准确高效的奶牛发情检测技术能够提高其受胎率、缩短胎间距,是改善奶牛繁殖效率和提高经济效益的重要手段。规模化、集约化养殖环境下,众多学术与科学研究证实奶牛行为方式和活动量是判断其是否发情的重要指标。目前常用奶牛行为决策方法主要是针对单点数据进行行为分类,而奶牛运动传感数据是按照时间顺序采集的多元时间序列数据,因此该文提出基于结构相似度的子序列段快速聚类算法(SC-SS,subsequence clustering based on structural similarity),首先利用加速度一阶差分值将奶牛运动动态时间序列传感数据划分成若干子序列段,然后计算子序列段加速度值、能量、标准方差等特征结构相似度;最后根据各个子序列的结构相似度进行快速聚类。试验数据分析对比表明,SC-SS较常用K-means算法具有更高的运行效率,可更有效地完成奶牛行为分类,提高奶牛发情检测的准确率。