绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解...绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解提取重构空间的最优特征序列,结合信息熵得出绕组松动的特征量——奇异谱熵,并作为诊断模型的输入,利用粒子群算法对多分类支持向量机进行参数优化。并将其测试结果与BP和PNN神经网络的诊断效果进行对比。实验结果证明,该方法能有效地判断绕组是否发生松动并正确识别绕组松动相,验证了上述方法的可行性和准确性。展开更多
文摘绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解提取重构空间的最优特征序列,结合信息熵得出绕组松动的特征量——奇异谱熵,并作为诊断模型的输入,利用粒子群算法对多分类支持向量机进行参数优化。并将其测试结果与BP和PNN神经网络的诊断效果进行对比。实验结果证明,该方法能有效地判断绕组是否发生松动并正确识别绕组松动相,验证了上述方法的可行性和准确性。