Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical p...Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical polymerization. The surface of the polypropylene membrane was activated by hydrophilic grafted polyelectrolyte, and then, pressure injection was used for the impregnation of the reactive solution in the membrane.Two types of pore-filled membranes were synthesized, chelating interpenetrating homopolymer networks of P(GMA-NMG), and chelating-ion exchange interpenetrating polymer networks(e.g., P(GMA-NMG)/P(AA),P(GMA-NMG)/P(AMPSA), and P(GMA-NMG)/P(Cl VBTA)). After their synthesis, the modified polypropylene membranes were characterized using techniques such as the electrokinetic potential, SEM, FT-IR, and Donnan dialysis to corroborate the chromium ion transport. The P(GMA-NMG) and complex network membranes exhibited a hydrophilic character with a water-uptake capacity between 20% and 35% and a percentage of modification between 4.0% and 7.0% in comparison with the behavior of the unmodified polypropylene membrane.Hexavalent chromium ions were efficiently transported from the food chamber at p H 9.0 when the 65.2%MTA1 P(Cl VBTA) homopolymer IPN membrane and 48.5% MTAG P(GMA-NMG)/P(Cl VBTA) IPN membrane were used. Similarly, hexavalent chromium ions were removed from the food chamber at pH 3.0 when MTAG(63.30%) and MTA1(35.68%) were used in 1 mol·L^(-1)Na Cl solution as the extraction reagent.展开更多
High interfacial energy Li^(0)-electrolyte interface contributes to larger Li^(0) nucleation embryos and a more stable interface,so the interfacial energy is essential for highly reversible Li^(0) deposition/stripping...High interfacial energy Li^(0)-electrolyte interface contributes to larger Li^(0) nucleation embryos and a more stable interface,so the interfacial energy is essential for highly reversible Li^(0) deposition/stripping.Herein,a high interfacial-energy artificial solid electrolyte interphase(SEI)with rich LiF embedded in lithiated poly-2-acrylamido-2-methylpropane sulfonic acid(PAMPS-Li)network is designed to realize favorable Li^(0) nucleation and rapid desolvation of Li+simultaneously.The Li-F bonds in LiF(001)exhibit stronger ion-dipole interactions with Li atoms,offering higher interfacial energies.When the growth surface energy and total interfacial energy of Li^(0) are balanced,the high interfacial energy SEI with abundant LiF can promote the formation of larger Li^(0) nucleation embryos.In addition,the PAMPS-Li with immobilized anions presents weaker interaction with Li^(0) and possesses higher polymer-Li interfacial energy,and its amide and sulfonic acid groups exhibit higher binding energies with Li^(+).Therefore,PAMPS-Li can easily promote the Li+to escape from the solvent sheath and weaken the desolvation energy barrier.The highly reversible Li^(0) deposition behavior with restricted side reactions is achieved based on the synergistic modification of high interfacial energy SEI with heterostructure.Most importantly,lifespan of multi-layered Li^(0) pouch cell(330 Wh kg-1)with a low N/P ratio(1.67)is over 100 cycles,verifying its potential practical application.展开更多
基金Supported by FONDECYT(Project no.1150510)PIA(Anillo ACT-130)+4 种基金7FP-MC Actions Grant,REDOC(MINEDUC Project UCO1202 at U.de Concepción)CHILTURPOL2(PIRSES-GA-2009 Project,Grant No.269153)the Marie Curie Program(n°269153)FONDECYT Grant No.11140324CIPA(No.20301.934.15),Chile
文摘Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical polymerization. The surface of the polypropylene membrane was activated by hydrophilic grafted polyelectrolyte, and then, pressure injection was used for the impregnation of the reactive solution in the membrane.Two types of pore-filled membranes were synthesized, chelating interpenetrating homopolymer networks of P(GMA-NMG), and chelating-ion exchange interpenetrating polymer networks(e.g., P(GMA-NMG)/P(AA),P(GMA-NMG)/P(AMPSA), and P(GMA-NMG)/P(Cl VBTA)). After their synthesis, the modified polypropylene membranes were characterized using techniques such as the electrokinetic potential, SEM, FT-IR, and Donnan dialysis to corroborate the chromium ion transport. The P(GMA-NMG) and complex network membranes exhibited a hydrophilic character with a water-uptake capacity between 20% and 35% and a percentage of modification between 4.0% and 7.0% in comparison with the behavior of the unmodified polypropylene membrane.Hexavalent chromium ions were efficiently transported from the food chamber at p H 9.0 when the 65.2%MTA1 P(Cl VBTA) homopolymer IPN membrane and 48.5% MTAG P(GMA-NMG)/P(Cl VBTA) IPN membrane were used. Similarly, hexavalent chromium ions were removed from the food chamber at pH 3.0 when MTAG(63.30%) and MTA1(35.68%) were used in 1 mol·L^(-1)Na Cl solution as the extraction reagent.
基金supported by the National Natural Science Foundation of China(22109030 and 21875195)Guangdong Basic and Applied Basic Research Foundation(2019A1515111069 and 2021A1515010177)the Key Research and Development Program of Yunnan Province(202103AA080019)。
文摘High interfacial energy Li^(0)-electrolyte interface contributes to larger Li^(0) nucleation embryos and a more stable interface,so the interfacial energy is essential for highly reversible Li^(0) deposition/stripping.Herein,a high interfacial-energy artificial solid electrolyte interphase(SEI)with rich LiF embedded in lithiated poly-2-acrylamido-2-methylpropane sulfonic acid(PAMPS-Li)network is designed to realize favorable Li^(0) nucleation and rapid desolvation of Li+simultaneously.The Li-F bonds in LiF(001)exhibit stronger ion-dipole interactions with Li atoms,offering higher interfacial energies.When the growth surface energy and total interfacial energy of Li^(0) are balanced,the high interfacial energy SEI with abundant LiF can promote the formation of larger Li^(0) nucleation embryos.In addition,the PAMPS-Li with immobilized anions presents weaker interaction with Li^(0) and possesses higher polymer-Li interfacial energy,and its amide and sulfonic acid groups exhibit higher binding energies with Li^(+).Therefore,PAMPS-Li can easily promote the Li+to escape from the solvent sheath and weaken the desolvation energy barrier.The highly reversible Li^(0) deposition behavior with restricted side reactions is achieved based on the synergistic modification of high interfacial energy SEI with heterostructure.Most importantly,lifespan of multi-layered Li^(0) pouch cell(330 Wh kg-1)with a low N/P ratio(1.67)is over 100 cycles,verifying its potential practical application.