Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is de...Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.展开更多
This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-depende...This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-dependent bounded real lemmas(BRLs) are derived such that the closedloop system is asymptotically stable with a prescribed H_(∞) level.The BRLs are then used to solve the H_(∞) controller design by incorporating with the cone complementary approach.Three numerical examples are finally given to show the validity of the proposed method.展开更多
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金Supported by the Nature Science Foundation of Shandong Province of China under Grant No.ZR.2009GM005the Science and Technology Plan Project of the Educational Department of Shandong Province of China under Grant No.J09LA54the research project of "SUST Spring Bud" of Shandong University of Science and Technology of China under Grant No.2009AZZ071
文摘Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.
基金supported by the National Nature Science Foundation of China under Grant No.61203136the Natural Science Foundation of Hunan Province of China Grant Nos.2015JJ5021 and 2015JJ3064the Construct Program of the Key Discipline in Hunan Province
文摘This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-dependent bounded real lemmas(BRLs) are derived such that the closedloop system is asymptotically stable with a prescribed H_(∞) level.The BRLs are then used to solve the H_(∞) controller design by incorporating with the cone complementary approach.Three numerical examples are finally given to show the validity of the proposed method.