目的开展飞机用7B04铝合金缝隙腐蚀仿真研究,理解缝隙腐蚀机理,找出影响缝隙腐蚀的关键因素。方法分析缝隙腐蚀类型,开展缝隙腐蚀试验,建立缝隙腐蚀数学模型,选择合适的边界条件,利用有限元法进行仿真计算。结果缝隙内pH值分布计算结果...目的开展飞机用7B04铝合金缝隙腐蚀仿真研究,理解缝隙腐蚀机理,找出影响缝隙腐蚀的关键因素。方法分析缝隙腐蚀类型,开展缝隙腐蚀试验,建立缝隙腐蚀数学模型,选择合适的边界条件,利用有限元法进行仿真计算。结果缝隙内pH值分布计算结果与试验测量值一致,缝隙口与外部液体/大气连接时,缝隙内溶液分别呈酸性或碱性。缝隙口溶液电势较低,缝隙口附近的铝合金腐蚀较快,含Al腐蚀产物多集中在缝隙口附近。缝隙宽度在0.1~0.3 mm范围内变化不影响铝合金腐蚀速率;缝隙深度增加,缝隙口与底部溶液电势差增大,铝合金腐蚀面积增大,但铝合金最大腐蚀电流密度不变。电位升高,缝隙内铝合金的腐蚀加剧,电位提高10 m V,腐蚀24 h后缝隙内铝合金界面的腐蚀电流密度增加59倍,Al(OH)_2Cl的最大浓度为自然电位下的30倍。结论缝隙腐蚀主要受缝隙外部阴极还原反应影响,电位对铝合金缝隙腐蚀的影响最大,飞机结构中应避免高电位材料同铝合金直接接触。展开更多
文摘目的开展飞机用7B04铝合金缝隙腐蚀仿真研究,理解缝隙腐蚀机理,找出影响缝隙腐蚀的关键因素。方法分析缝隙腐蚀类型,开展缝隙腐蚀试验,建立缝隙腐蚀数学模型,选择合适的边界条件,利用有限元法进行仿真计算。结果缝隙内pH值分布计算结果与试验测量值一致,缝隙口与外部液体/大气连接时,缝隙内溶液分别呈酸性或碱性。缝隙口溶液电势较低,缝隙口附近的铝合金腐蚀较快,含Al腐蚀产物多集中在缝隙口附近。缝隙宽度在0.1~0.3 mm范围内变化不影响铝合金腐蚀速率;缝隙深度增加,缝隙口与底部溶液电势差增大,铝合金腐蚀面积增大,但铝合金最大腐蚀电流密度不变。电位升高,缝隙内铝合金的腐蚀加剧,电位提高10 m V,腐蚀24 h后缝隙内铝合金界面的腐蚀电流密度增加59倍,Al(OH)_2Cl的最大浓度为自然电位下的30倍。结论缝隙腐蚀主要受缝隙外部阴极还原反应影响,电位对铝合金缝隙腐蚀的影响最大,飞机结构中应避免高电位材料同铝合金直接接触。