Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or e...Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.展开更多
We investigate the generation of entanglement of coherent excitonic states in coupled quantum dots placed in a cavity by meaning of the state preparation fidelity [Nature (London) 404 (2002) 256; Phys. Rev. A 65 ...We investigate the generation of entanglement of coherent excitonic states in coupled quantum dots placed in a cavity by meaning of the state preparation fidelity [Nature (London) 404 (2002) 256; Phys. Rev. A 65 (2002) 012107; J. Uffink, Phys. Rev. Lett. 88 (2002) 230406.] The effect of the number of excitons and the coherent intensity |α| of the cavity field on the entanglement is also studied.展开更多
基金the Natural Science Foundation of Jiangxi Province of China under Grant No.2007GZW0187
文摘Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.
基金National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘We investigate the generation of entanglement of coherent excitonic states in coupled quantum dots placed in a cavity by meaning of the state preparation fidelity [Nature (London) 404 (2002) 256; Phys. Rev. A 65 (2002) 012107; J. Uffink, Phys. Rev. Lett. 88 (2002) 230406.] The effect of the number of excitons and the coherent intensity |α| of the cavity field on the entanglement is also studied.