In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by thi...In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.展开更多
Concurrence can measure the entanglement property of a system. If the channel is a pure state, positive concurrence state can afford the good performance in the teleportation process. If the channel ia a mixed state, ...Concurrence can measure the entanglement property of a system. If the channel is a pure state, positive concurrence state can afford the good performance in the teleportation process. If the channel ia a mixed state, positive concurrence state cannot assure the good performance in the teleportation. The conditions of the positive concurrence and the quantum teleportation in the Heisenberg spin ring is derived.展开更多
Recently Yang,Chu,and Han [Phys.Rev.A 70 (2004) 022329] presented a new type of multipartiteentangled states for implementing efficient many-party controlled teleportation of multiqubit quantum information.Herewe prop...Recently Yang,Chu,and Han [Phys.Rev.A 70 (2004) 022329] presented a new type of multipartiteentangled states for implementing efficient many-party controlled teleportation of multiqubit quantum information.Herewe propose a simple scheme for preparing such a type of multi-atom entangled states in cavity quantum electrodynamics(QED).The scheme involves atom-cavity interaction with large detuning,and is immune to the cavity decay and thethermal field states.Some practical analyses show its availability with the present technology.展开更多
Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which make...Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which makes up a new quantum mechanical representation owing to completeness relation and orthogonal property. Its entanglement can be seen more clearly by analyzing its standard Schmidt decomposition. In addition, some applications of the multipartite entanglement are proposed including deriving the generalized Wigner operator and squeezing operator.展开更多
Quantum statistical properties of the binomial field interacting with the two entangled atoms are investi-gated for the different initial conditions.It is found that the sub-Poissonian distribution and the antibunchin...Quantum statistical properties of the binomial field interacting with the two entangled atoms are investi-gated for the different initial conditions.It is found that the sub-Poissonian distribution and the antibunching effect canbe presented for the certain ranges of the involved parameters.展开更多
Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or e...Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.展开更多
To consummate the quantum pendulum theory whose Hamiltonian takes bosonic operator formalism and manifestly exhibits its dynamic behaviour in the entangled state representation, we introduce angular momentum state rep...To consummate the quantum pendulum theory whose Hamiltonian takes bosonic operator formalism and manifestly exhibits its dynamic behaviour in the entangled state representation, we introduce angular momentum state representation and phase state representation. It turns out that the angular momentum state is the partial wave expansion of the entangled state.展开更多
A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which posse...A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which possesses two qubits,is proposed. It is different from the other proofs in which there exists a fundamental requirement that certain specific suitable Bell states have been chosen. Moreover, in any non-ideal situation, a common Bell inequality independent of the choices of the 16-product states is derived, which is used to test the contradiction between quantum mechanics and local reality theory in the reach of current experimental technology.展开更多
Using the parametrized entangled state representations we have found a generalized Hankel transformationwith the integral kernel being a combination of Bessel functions.This generalized Hankel transformation correspon...Using the parametrized entangled state representations we have found a generalized Hankel transformationwith the integral kernel being a combination of Bessel functions.This generalized Hankel transformation corresponds tothe appropriate quantum mechanical representation transformation.展开更多
We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found t...We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found that the mean fidelity of the scheme increases with the decrease of the para-Bose parameter ho in the case of non-maximally entangled para-Bose entangled coherent states.展开更多
We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle state...We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle states. The first sender transforms the quantum channel shared by all the agents via POVM according to her knowledge of prepared state. All the senders perform singIe- or two-particle projective measurements on their entangled particles and the receiver can probabilisticaly reconstruct the original state on her entangled particles via unitary transformation and auxiliary qubit. The scheme is optimal as the probability which the receiver prepares the original state equals to the entanglement of the quantum channel. Moreover, it is more convenience in application than others as it requires only two-particle entanglements for preparing an arbitrary two-qudit state.展开更多
In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions ...In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.展开更多
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-HorneZeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.
文摘Concurrence can measure the entanglement property of a system. If the channel is a pure state, positive concurrence state can afford the good performance in the teleportation process. If the channel ia a mixed state, positive concurrence state cannot assure the good performance in the teleportation. The conditions of the positive concurrence and the quantum teleportation in the Heisenberg spin ring is derived.
基金the Natural Science Foundation of Hunan Province under Grant No.06JJ5015the Scientific Research Fund of the Education Department of Hunan Province under Grant No.06C354
文摘Recently Yang,Chu,and Han [Phys.Rev.A 70 (2004) 022329] presented a new type of multipartiteentangled states for implementing efficient many-party controlled teleportation of multiqubit quantum information.Herewe propose a simple scheme for preparing such a type of multi-atom entangled states in cavity quantum electrodynamics(QED).The scheme involves atom-cavity interaction with large detuning,and is immune to the cavity decay and thethermal field states.Some practical analyses show its availability with the present technology.
基金National Natural Science Foundation of China under Grant No.10675108the Natural Science Foundation of the Education Department of Anhui Province under Grant No.KJ2007B377ZCthe Young University Teachers' Fund of Anhui Province under Grant No.2007jql155
文摘Our primary purpose of this work is to explicitly construct the general multiparite Einstein-Podolsky- Rosen (EPR) entangled state in multi-mode Fock space for a system with different masses of particles, which makes up a new quantum mechanical representation owing to completeness relation and orthogonal property. Its entanglement can be seen more clearly by analyzing its standard Schmidt decomposition. In addition, some applications of the multipartite entanglement are proposed including deriving the generalized Wigner operator and squeezing operator.
基金The project supported in part by the Science Foundation of China University of Petroleum under Grant No.Y061815
文摘Quantum statistical properties of the binomial field interacting with the two entangled atoms are investi-gated for the different initial conditions.It is found that the sub-Poissonian distribution and the antibunching effect canbe presented for the certain ranges of the involved parameters.
基金the Natural Science Foundation of Jiangxi Province of China under Grant No.2007GZW0187
文摘Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.
文摘To consummate the quantum pendulum theory whose Hamiltonian takes bosonic operator formalism and manifestly exhibits its dynamic behaviour in the entangled state representation, we introduce angular momentum state representation and phase state representation. It turns out that the angular momentum state is the partial wave expansion of the entangled state.
文摘A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which possesses two qubits,is proposed. It is different from the other proofs in which there exists a fundamental requirement that certain specific suitable Bell states have been chosen. Moreover, in any non-ideal situation, a common Bell inequality independent of the choices of the 16-product states is derived, which is used to test the contradiction between quantum mechanics and local reality theory in the reach of current experimental technology.
基金National Natural Science Foundation of China under Grant Nos.10475056 and 10775097
文摘Using the parametrized entangled state representations we have found a generalized Hankel transformationwith the integral kernel being a combination of Bessel functions.This generalized Hankel transformation corresponds tothe appropriate quantum mechanical representation transformation.
基金The project supported by National Natural Science Foundation of China under Grant No.10174066
文摘We study the entanglement of the para-Bose entangled coherent states by adopting the entanglement of formation and propose a scheme of probabilistic teleportation via para-Bose entangled coherent states. It is found that the mean fidelity of the scheme increases with the decrease of the para-Bose parameter ho in the case of non-maximally entangled para-Bose entangled coherent states.
基金Supported by Program for Natural Science Foundation of Guangxi under Grant No. 2011GxNSFB018062, Excellent Talents in Guangxi Higher Education Institutions under Grant No. [2012]41, Key program of Cuangxi University for Nationalities under Grant No. [2011]317 and the Bagui Scholarship Project
文摘We present a scheme for symmetric controlled remote preparation of an arbitrary 2-qudit state form a sender to either of the two receivers via positive operator-valued measurement and pure entangled two-particle states. The first sender transforms the quantum channel shared by all the agents via POVM according to her knowledge of prepared state. All the senders perform singIe- or two-particle projective measurements on their entangled particles and the receiver can probabilisticaly reconstruct the original state on her entangled particles via unitary transformation and auxiliary qubit. The scheme is optimal as the probability which the receiver prepares the original state equals to the entanglement of the quantum channel. Moreover, it is more convenience in application than others as it requires only two-particle entanglements for preparing an arbitrary two-qudit state.
基金supported by the National Natural Science Foundation of China (Grant No.11371005)Hebei Natural Science Foundation of China (Grant Nos.A2012205013 and A2014205060)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.3142014068)
文摘In the regime of weak nonlinearity we present two general,feasible schemes for manipulating photon states.One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger(GHZ)states.Interactions of the incoming photons with crossKerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner.The second scheme discussed is an analyzer for multiphoton maximally entangled states,which is derived from the above entangler.In this scheme,all of the 2nn-photon GHZ states can,nearly deterministically,be discriminated.