Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compressio...Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes’ boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.展开更多
An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approx...An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible.展开更多
An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the a...An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.展开更多
To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA)...To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312105), the National Natural Science Founda-tion of China (No. 60573074), the Natural Science Foundation of Shanxi Province, China (No. 20041040), Shanxi Foundation of Tackling Key Problem in Science and Technology (No. 051129), and Key NSFC Project of "Digital Olympic Museum" (No. 60533080), China
文摘Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes’ boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.
基金National Natural Science Foundation of China(60572011) 985 Special Study Project(LZ85 -231 -582627)
文摘An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible.
文摘An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.
基金partially supported by the National Natural Science Foundation of China under Grants No. 610202380, No. 60932007Major Program of National Natural Science Foundation of China under Grant No. 60932007+2 种基金Tianjin Research Program of Application Foundation and Advanced Technology under Grant No. 12JCQNJC00300Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20110032120029the Innovation Foundation of Tianjin University
文摘To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.