Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
超高分子量聚乙烯(UHMWPE)在凝胶纺丝工艺条件下超分子结构的形成及其机理是目前正在研究的热门课题。本文借助扫描电子显微镜(SEM)、广角 X 射线衍射(WAXD)、小角 X 射线(SAXS)和透射电子显微镜(TEM)等手段初步研究和探讨了 UHMWPE 凝...超高分子量聚乙烯(UHMWPE)在凝胶纺丝工艺条件下超分子结构的形成及其机理是目前正在研究的热门课题。本文借助扫描电子显微镜(SEM)、广角 X 射线衍射(WAXD)、小角 X 射线(SAXS)和透射电子显微镜(TEM)等手段初步研究和探讨了 UHMWPE 凝胶丝在超拉伸过程中超分子结构的形成过程及机理,发现拉伸后纤维具有明显的串晶结构并有部分向连续结晶体结构转化,而且认为这一超分子特征结构是纤维取得高性能的内在结构原因。展开更多
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of...We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.展开更多
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
文摘超高分子量聚乙烯(UHMWPE)在凝胶纺丝工艺条件下超分子结构的形成及其机理是目前正在研究的热门课题。本文借助扫描电子显微镜(SEM)、广角 X 射线衍射(WAXD)、小角 X 射线(SAXS)和透射电子显微镜(TEM)等手段初步研究和探讨了 UHMWPE 凝胶丝在超拉伸过程中超分子结构的形成过程及机理,发现拉伸后纤维具有明显的串晶结构并有部分向连续结晶体结构转化,而且认为这一超分子特征结构是纤维取得高性能的内在结构原因。
文摘We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.