期刊文献+
共找到4,957篇文章
< 1 2 248 >
每页显示 20 50 100
基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测 被引量:4
1
作者 陈奎 刘晓 +2 位作者 贾立娇 方永丽 赵昌新 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1289-1300,I0025,共13页
随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先... 随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先将重构的ShuffleNetV2-Stem-SPP(3S)网络作为YOLOv5的主干网络,显著减小了网络的参数量和计算量;其次引入针对小目标的增强多尺度特征融合网络以及4个预测头,来增强网络对绝缘子缺陷的感知能力,并结合Mosaic-9数据增强、CIoU损失函数进一步补偿轻量化导致的检测精度损失;最后将其应用到自制绝缘子数据集进行验证。实验结果表明,该文所提出的模型相对于未改进的YOLOv5,全类平均精度提高了3%,检测速度提高了81.8%,参数量、计算量分别压缩了82.4%、67%。因此,所提出的模型更适合部署在无人机平台上进行绝缘子缺陷的实时监测。 展开更多
关键词 绝缘子缺陷检测 YOLOv5 轻量化 ShuffleNetV2网络 小目标检测 无人机
下载PDF
改进YOLOv7算法的钢材表面缺陷检测研究 被引量:3
2
作者 高春艳 秦燊 +1 位作者 李满宏 吕晓玲 《计算机工程与应用》 CSCD 北大核心 2024年第7期282-291,共10页
当前,基于深度学习的智能检测技术逐步应用于钢材表面缺陷检测领域,针对钢材表面缺陷检测精度低的问题,提出一种高精度实时的缺陷检测算法CDN-YOLOv7。加入CARAFE轻量化上采样算子来改善网络特征融合能力,融合级联注意力机制和解耦头重... 当前,基于深度学习的智能检测技术逐步应用于钢材表面缺陷检测领域,针对钢材表面缺陷检测精度低的问题,提出一种高精度实时的缺陷检测算法CDN-YOLOv7。加入CARAFE轻量化上采样算子来改善网络特征融合能力,融合级联注意力机制和解耦头重新设计YOLOv7检测头网络,旨在解决原始头网络特征利用效率不高的问题,使其充分利用各尺度、通道、空间的多维度信息,提升复杂场景下模型表征能力。引入归一化Wasserstein距离重新设计Focal-EIoU损失函数,提出NF-EIoU替换CIoU损失,平衡各尺度缺陷样本对Loss的贡献,降低各尺度缺陷的漏检率。实验结果表明,CDN-YOLOv7的检测精度可达80.3%,较于原YOLOv7精度提升了6.0个百分点,模型推理速度可达60.8帧/s,满足实时性需求,CDN-YOLOv7在提升各尺度缺陷检测精度的同时显著降低了缺陷的漏检率。 展开更多
关键词 机器视觉 钢材表面 缺陷检测 CDN-YOLOv7
下载PDF
基于多尺度卷积注意力机制的输电线路防振锤缺陷检测 被引量:3
3
作者 张烨 李博涛 +2 位作者 尚景浩 黄新波 翟鹏超 《电工技术学报》 EI CSCD 北大核心 2024年第11期3522-3537,共16页
作为输电线路中的重要金具部件,防振锤的缺陷将对输电线路构成严重威胁。针对由于防振锤缺陷样本数量稀少、背景复杂、区域形状尺寸不一造成的防振锤缺陷识别能力不足的问题,提出一种基于多尺度卷积注意力机制的防振锤缺陷检测方法。首... 作为输电线路中的重要金具部件,防振锤的缺陷将对输电线路构成严重威胁。针对由于防振锤缺陷样本数量稀少、背景复杂、区域形状尺寸不一造成的防振锤缺陷识别能力不足的问题,提出一种基于多尺度卷积注意力机制的防振锤缺陷检测方法。首先,通过统计不同缺陷的防振锤尺寸,设计适应不同类别的多尺度卷积注意力机制,使网络重点关注图像中的防振锤区域;其次,引入结构重参数化方法,以将网络中的多分支结构无损失地转换为单分支结构,在提高网络检测性能的同时维持检测速度在较高水平;最后,以渐进式特征金字塔网络结构(AFPN)为基础,融合更多的浅层网络,提高了网络检测防振锤小目标的能力。实际收集的防振锤缺陷数据集实验结果表明,设计的检测方法可显著提升防振锤缺陷检测的性能,检测精度mAP0.5达到了91.9%,在TITAN XP平台下检测速度达60.88帧/s,可为输电线路防振锤智能化巡检提供参考。 展开更多
关键词 防振锤 深度学习 注意力机制 实时缺陷检测
下载PDF
基于改进SSD的工件表面缺陷检测 被引量:3
4
作者 刘艳菊 王秋霁 +2 位作者 张惠玉 刘彦忠 赵开峰 《热加工工艺》 北大核心 2024年第2期134-139,共6页
工件的表面缺陷不仅影响外观而且直接影响产品的质量、寿命和性能,因此对工件进行实时表面缺陷检测很有必要。针对当前SSD算法不利于小目标检测易导致误检的情况,提出了一种基于单阶段多层检测器的改进SSD自动检测方法。采用了以ResNet... 工件的表面缺陷不仅影响外观而且直接影响产品的质量、寿命和性能,因此对工件进行实时表面缺陷检测很有必要。针对当前SSD算法不利于小目标检测易导致误检的情况,提出了一种基于单阶段多层检测器的改进SSD自动检测方法。采用了以ResNet替换SSD中原始的VGGNet的方法,研究了小目标检测的问题;采用了对深层特征进行反卷积且将深层特征与浅层特征融合的方法,研究了语义信息不足易误检的问题。结果表明,该方法较原SSD模型在工件的表面缺陷检测上m AP值提高了约4.6%,从而认为本方法可用于工件表面缺陷的实时自动检测。 展开更多
关键词 工件表面 缺陷检测 SSD 反卷积 特征融合
下载PDF
修复缺陷嫌疑区域的无监督磁瓦表面缺陷检测 被引量:2
5
作者 唐善成 逯建辉 +2 位作者 张莹 金子成 赵安新 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第4期718-728,共11页
磁瓦表面缺陷样本数量少,异常视觉特征分布发散,现有依赖目标特征的有监督检测方法不能有效检测未定义缺陷;磁瓦表面正常纹理呈非均匀且非周期性分布,使得经典重构网络难以准确地重构磁瓦表面正常特征,导致相关无监督检测方法性能低下.... 磁瓦表面缺陷样本数量少,异常视觉特征分布发散,现有依赖目标特征的有监督检测方法不能有效检测未定义缺陷;磁瓦表面正常纹理呈非均匀且非周期性分布,使得经典重构网络难以准确地重构磁瓦表面正常特征,导致相关无监督检测方法性能低下.为此,采用多头注意力增强的掩码图像修复网络(MIINet),长距离提取图像特征,捕捉全局信息,增强图像修复的能力;引入视觉显著性算法抑制磁瓦表面纹理信息和突显缺陷区域,以便二值化算法精准分割缺陷嫌疑区域;利用MIINet修复待检测图像缺陷嫌疑区域,选用修复前后图像的残差图像和结构相似性实现缺陷检测与缺陷判定.与经典无监督方法相比,修复缺陷嫌疑区域的表面缺陷检测方法的准确率提升了2.36%,F1值提升了1.62%. 展开更多
关键词 多头注意力 磁瓦表面缺陷检测 无监督学习 图像修复 视觉显著性
下载PDF
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:1
6
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 DETR EfficientNet 3-D注意力机制 多尺度加权特征融合
下载PDF
基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法 被引量:4
7
作者 崔克彬 焦静颐 《图学学报》 CSCD 北大核心 2024年第1期112-125,共14页
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YO... 针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进CBAM(modified CBAM,MCB)和可替换四头ASFF预测头(four-head ASFF prediction head,FAH)的YOLOv8钢材表面缺陷检测算法,简记为MCB-FAH-YOLOv8。通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将FPN结构改为BiFPN更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的SimCSPSPPF模块。同时,针对微小物体检测,提出了四头ASFF预测头,可根据数据集特点进行替换。实验结果表明,MCB-FAH-YOLOv8算法在VOC2007数据集上检测精度(mAP)达到了88.8%,在NEU-DET钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度。 展开更多
关键词 MCB-FAH-YOLOv8 缺陷检测 注意力机制 四头ASFF预测头 特征融合
下载PDF
基于改进YOLOX-S的太阳能电池片表面缺陷检测 被引量:1
8
作者 王淑青 朱文鑫 +1 位作者 张子言 王娟 《激光杂志》 CAS 北大核心 2024年第7期118-123,共6页
针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其... 针对太阳能电池片表面缺陷检测存在模型体积大和检测性能不达标的问题,提出了一种轻量化YOLOX-S检测模型用于工业生产。首先以YOLOX-S模型为基础,采用轻量级网络MobileNetV3优化主干网络,减少模型参数,降低模型运算量,提高检测速度。其次采用FReLU激活函数改进MobileNetV3,使模型具有空间像素级建模能力,提高模型空间特征信息灵敏度,增强模型对小目标缺陷的特征提取能力。最后,在颈部网络引入注意力特征融合模块,聚合多尺度信息,加强模型的多尺度特征融合能力。实验结果表明,改进的YOLOX-S检测模型平均精度均值可达97.6%,参数量减少43.2%,检测速度达到51帧/s,置信度均在90%以上,检测结果可靠。 展开更多
关键词 太阳能电池片 缺陷检测 YOLOX-S 深度学习 轻量化
下载PDF
局部和全局特征融合的太阳能电池片表面缺陷检测 被引量:2
9
作者 陶志勇 何燕 +2 位作者 林森 易廷军 张尧晟 《光电工程》 CAS CSCD 北大核心 2024年第1期86-99,共14页
太阳能电池片表面缺陷具有类内差异大、类间差异小和背景特征复杂等特点,因此,要实现高精度的太阳能电池片表面缺陷自动检测是一项富有挑战性的任务。针对此问题,该文提出融合局部和全局特征的卷积视觉Transformer网络(CViT-Net),首先采... 太阳能电池片表面缺陷具有类内差异大、类间差异小和背景特征复杂等特点,因此,要实现高精度的太阳能电池片表面缺陷自动检测是一项富有挑战性的任务。针对此问题,该文提出融合局部和全局特征的卷积视觉Transformer网络(CViT-Net),首先采用Ghost聚焦(G-C2F)模块提取电池片缺陷局部特征;然后引进坐标注意力强调缺陷特征并抑制背景特征;最后构建Ghost视觉(G-ViT)模块融合电池片缺陷局部特征和全局特征。同时,针对不同检测精度和模型参数量,分别提供了CViT-Net-S和CViT-Net-L两种网络结构。实验结果表明,与经典MobileVit、MobileNetV3和GhostNet轻量级网络相比,CViT-Net-S对电池片分类准确率分别提升了1.4%、2.3%和1.3%,对电池片检测mAP50分别提升了2.7%、0.3%和0.8%;与ResNet50、RegNet网络相比,CViT-Net-L分类准确率分别提升了0.72%和0.7%,检测mAP50分别提升了3.9%、1.3%;与先进YOLOv6、YOLOv7和YOLOv8检测网络相比,作为骨干网络的CViT-Net-S、CViT-Net-L结构在mAP和mAP50指标上仍保持良好检测效果。结果证明本文算法在太阳能电池片表面缺陷检测领域具有应用价值。 展开更多
关键词 深度学习 特征融合 太阳能电池 缺陷分类 缺陷检测
下载PDF
基于神经网络的螺丝表面缺陷检测 被引量:1
10
作者 朱敏玲 任玉琢 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期224-231,共8页
针对螺丝零件通常存在的缺陷检测问题,提出了一种基于神经网络螺丝表面缺陷检测方法。将SimAM注意力机制引入YOLOv7网络模型,用GIoU损失函数替换CIoU损失函数提高模型检测精度,在目标框位置预测过程中,引入Soft-NMS优化候选框选择方法,... 针对螺丝零件通常存在的缺陷检测问题,提出了一种基于神经网络螺丝表面缺陷检测方法。将SimAM注意力机制引入YOLOv7网络模型,用GIoU损失函数替换CIoU损失函数提高模型检测精度,在目标框位置预测过程中,引入Soft-NMS优化候选框选择方法,有效提升候选框位置选择的精度。实验结果表明,改进后的网络模型平均精度均值(mAP)达到98.9%,对小目标缺陷检测精度更高,误检漏检情况更少,可以有效满足螺丝表面缺陷检测要求。 展开更多
关键词 螺丝 缺陷检测 神经网络 YOLOv7 小目标检测
下载PDF
基于轻量化YOLOv5的电气设备外部缺陷检测 被引量:1
11
作者 廖晓辉 谢子晨 +2 位作者 辛忠良 陈怡 叶梁劲 《郑州大学学报(工学版)》 CAS 北大核心 2024年第4期117-124,共8页
为了提高变电站电气设备外部缺陷实时检测的精度,同时让检测模型更加轻量化,提出了一种基于轻量化YOLOv5的电气设备外部缺陷检测方法。首先,构建电气设备外部缺陷图像数据集并进行数据增强处理。其次,采用3种优化策略对原YOLOv5进行改进... 为了提高变电站电气设备外部缺陷实时检测的精度,同时让检测模型更加轻量化,提出了一种基于轻量化YOLOv5的电气设备外部缺陷检测方法。首先,构建电气设备外部缺陷图像数据集并进行数据增强处理。其次,采用3种优化策略对原YOLOv5进行改进:通过引入EfficientViT网络改进算法主干网络,减少模型参数量,并在算法Neck部分中加入SimAM无参数注意力机制来提高变电站复杂背景下的识别精度,同时采用Soft-NMS模块来改进检测框筛选方式,避免出现缺陷漏检现象。最后,通过消融实验进行验证。结果表明:轻量化后的电气设备外部缺陷检测模型mAP值稳定在86.4%,与原模型相比提高了1.2百分点,模型参数量减少了20%,计算量减少了38%,模型大小为11 MB,比原模型减少了19.7%。改进后的模型能够满足设备外部缺陷实时检测的要求,可以实现模型的轻量化部署。 展开更多
关键词 缺陷检测 电气设备 轻量化YOLOv5 EfficientViT网络 SimAM注意力 Soft-NMS结构
下载PDF
计算机视觉的电站锅炉水冷壁缺陷检测方法 被引量:1
12
作者 王云霞 杨增阳 +1 位作者 岳海姣 杨守波 《机械设计与制造》 北大核心 2024年第2期246-249,254,共5页
发电厂锅炉巡检可有效避免安全事故发生,针对现场巡检过程中,锅炉水冷壁巡检区域较大,部分区域检测困难问题,开发一种基于YOLOv3模型的水冷壁缺陷检测系统。无人机携带视觉采集装置,对豫能集团某电厂锅炉水冷壁进行图像采集,画面经压缩... 发电厂锅炉巡检可有效避免安全事故发生,针对现场巡检过程中,锅炉水冷壁巡检区域较大,部分区域检测困难问题,开发一种基于YOLOv3模型的水冷壁缺陷检测系统。无人机携带视觉采集装置,对豫能集团某电厂锅炉水冷壁进行图像采集,画面经压缩后实时无线传输到检测末端装置,采用YOLOv3算法对水冷壁数据进行分析,对模型重要参数进行调整并做出样本增广与平衡化改进处理,提高检测效果,共测出磨损、裂缝、氧化等106处失效部位,与人工检测对比,成功率达77.9%。该方法解决了在巡检区域大、部分区域检测困难问题,使大型电站锅炉在开展水冷壁检测方面实际付出的成本得到有效缩减。 展开更多
关键词 电站锅炉 水冷壁 无人机 YOLOv3 缺陷检测
下载PDF
基于改进Faster R-CNN的热轧带钢表面缺陷检测 被引量:1
13
作者 邓慧 曾磊 《控制工程》 CSCD 北大核心 2024年第4期752-759,共8页
热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Fas... 热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的检测算法,实现对热轧带钢表面缺陷的高效、高精度检测。首先,采用特征相加的方法对底层细节特征和高层语义特征进行融合;然后,采用精准的感兴趣区域池化(precise region of interest pooling,Precise ROI Pooling)获取固定大小的特征向量,避免特征出现位置偏差;最后,利用均值偏移聚类算法对带钢数据集进行聚类,获得适用于热轧带钢表面缺陷检测的先验框尺寸。实验结果表明,所提算法在热轧带钢表面缺陷检测数据集上的平均精度均值达到了85.34%,检测速度为23.5帧/s,且鲁棒性良好,满足实际的工业检测需求。 展开更多
关键词 表面缺陷检测 Faster R-CNN 特征融合 Precise ROI Pooling 均值偏移
下载PDF
改进YOLOv5s的钢材表面缺陷检测算法 被引量:1
14
作者 吕秀丽 卢海滨 +1 位作者 侯春光 王志刚 《化工自动化及仪表》 CAS 2024年第2期301-309,共9页
为提高钢材表面缺陷检测的准确率,提出一种改进YOLOv5s的钢材表面缺陷检测算法。首先,在特征提取网络中引入Swin Transformer结构,增强网络对特征的感知能力;其次,添加坐标注意力机制,加强对重要特征信息的关注;最后,针对钢材缺陷的特... 为提高钢材表面缺陷检测的准确率,提出一种改进YOLOv5s的钢材表面缺陷检测算法。首先,在特征提取网络中引入Swin Transformer结构,增强网络对特征的感知能力;其次,添加坐标注意力机制,加强对重要特征信息的关注;最后,针对钢材缺陷的特点增加检测层,提升多尺度目标检测能力,并使用SIOU损失函数评估检测效果。将所提出的算法在公开数据集NEU-DET上进行消融实验,结果表明:所提算法能有效提高钢材表面缺陷目标检测的准确率。 展开更多
关键词 缺陷检测 深度学习 改进YOLOv5s Swin Transformer 注意力机制
下载PDF
基于机器视觉的变速器齿轮表面缺陷检测研究 被引量:1
15
作者 罗山 廖瑞 郑彬 《制造业自动化》 2024年第3期130-133,166,共5页
针对人工检测变速器齿轮表面缺陷存在可靠性差、效率低、不能满足批量生产的问题,开展齿轮表面缺陷自动检测的研究。以汽车变速器齿轮为检测对象,首先搭建机器视觉齿轮表面缺陷检测系统,采集齿轮缺陷图像样本,对采集的齿轮图像进行去噪... 针对人工检测变速器齿轮表面缺陷存在可靠性差、效率低、不能满足批量生产的问题,开展齿轮表面缺陷自动检测的研究。以汽车变速器齿轮为检测对象,首先搭建机器视觉齿轮表面缺陷检测系统,采集齿轮缺陷图像样本,对采集的齿轮图像进行去噪、增强等预处理;然后采用改进的Scharr边缘检测算法提取齿轮边缘;最后获取感兴趣区域的坐标信息,寻找齿轮外圆的边缘点,计算齿轮的边缘点之间的距离,从而实现齿轮缺陷的精确定位。实验结果表明:该系统可准确检测出齿轮表面缺陷所在位置,可靠性和稳定性良好,检测效率高,为机器视觉齿轮缺陷检测技术的应用提供了思路。 展开更多
关键词 变速器齿轮 表面缺陷检测 机器视觉 HALCON
下载PDF
基于三重注意力的轻量级YOLOv8印刷电路板缺陷检测算法 被引量:1
16
作者 沈萍 李想 +1 位作者 杨宁 陈艾东 《微电子学与计算机》 2024年第4期20-30,共11页
在全球产业中,印刷电路板的生产和应用持续增长,已经成为各种电子设备的核心组成部分。由于缺陷尺度较小的问题以及检测模型轻便嵌入便携式设备的需求,印刷电路板图像的自动缺陷检测是一项具有挑战性的任务。为了满足智能制造和使用中... 在全球产业中,印刷电路板的生产和应用持续增长,已经成为各种电子设备的核心组成部分。由于缺陷尺度较小的问题以及检测模型轻便嵌入便携式设备的需求,印刷电路板图像的自动缺陷检测是一项具有挑战性的任务。为了满足智能制造和使用中对高质量印刷电路板产品日益增长的需求,提出一种基于YOLOv8的印刷电路板缺陷检测改进方法。首先,采用轻量级网络MobileViT作为主干网络,减小模型体积和计算量。其次,引入Triplet Attention模块,增强张量中不同维度间特征的捕捉能力。最后,将边界框损失函数替换为LMPDIoU,直接最小化预测框与实际标注框之间的左上角和右下角点距离。实验表明:改进后的检测模型能够在拥有极小参数量的同时保证小尺寸缺陷检测精度较高,模型参数量降低率为89.38%,满足轻便嵌入便携式检测设备和计算机资源受限的场景应用,证实了在印刷电路板缺陷检测领域具有良好的应用前景。 展开更多
关键词 印刷电路板 缺陷检测 YOLOv8 轻量级主干网络 注意力机制
下载PDF
基于MobileViT-CBAM的枇杷表面缺陷检测方法
17
作者 赵茂程 邹涛 +2 位作者 齐亮 汪希伟 李大伟 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期420-427,共8页
为实现枇杷采后快速、准确筛选,本文以MobileViT为主干特征提取网络,通过分别在Layer1和Layer2层之后嵌入注意力模块CBAM(Convolutional block attention module),强化网络在通道和空间上对细节特征的提取能力,构建了一种轻量化网络模型... 为实现枇杷采后快速、准确筛选,本文以MobileViT为主干特征提取网络,通过分别在Layer1和Layer2层之后嵌入注意力模块CBAM(Convolutional block attention module),强化网络在通道和空间上对细节特征的提取能力,构建了一种轻量化网络模型MobileViT-CBAM。相较于MobileViT,在验证集和测试集上本文方法对疤痕、机械伤、腐烂等缺陷果的识别准确率分别提高1.17、1.23个百分点。试验结果表明,MobileViT-CBAM模型与VGG16、ResNet34、MobileNetV2相比较,准确率最高(97.86%),同时兼具内存占用量小(3.768 MB)、推理时间短(每幅图像需42 ms)的优势。该轻量化网络模型可部署于嵌入式系统。本研究为构建枇杷在线检测系统提供了缺陷识别理论基础,为枇杷等农产品外部品质检测提供了一个高效、准确的方法。 展开更多
关键词 枇杷 MobileViT-CBAM 缺陷检测 轻量化
下载PDF
不均匀光照下带钢表面缺陷检测方法的研究
18
作者 黄新波 孙苏珍 +3 位作者 张烨 李博涛 任玉成 赵隆 《机械科学与技术》 CSCD 北大核心 2024年第8期1394-1402,共9页
针对带钢表面存在光照不均及缺陷类型繁杂的问题导致缺陷检测精度不高的情况,提出一种基于梯度相似性引导模板的带钢缺陷检测方法。在利用二维高斯函数估计背景模板的基础上,结合梯度相似性引导其最优参数的选取;将原图像与优化后的背... 针对带钢表面存在光照不均及缺陷类型繁杂的问题导致缺陷检测精度不高的情况,提出一种基于梯度相似性引导模板的带钢缺陷检测方法。在利用二维高斯函数估计背景模板的基础上,结合梯度相似性引导其最优参数的选取;将原图像与优化后的背景模板进行图像差分操作,消除部分不均匀光照,同时构造分段函数对差分图像进行光照补偿,并结合Meanshift算法去除噪点,进一步增强差分图像;利用改进的K-means算法进行聚类分割并结合区域标记实现带钢表面不同缺陷的准确检测。实验结果表明,该方法能够在不均匀光照下准确检测出夹杂、麻点、酸洗、划痕等多种带钢表面缺陷,召回率和精确度分别达到93.2%和96.8%。 展开更多
关键词 不均匀光照 图像差分 K-means聚类分割 表面缺陷检测
下载PDF
改进YOLOv5的织物缺陷检测方法
19
作者 朱磊 王倩倩 +2 位作者 姚丽娜 潘杨 张博 《计算机工程与应用》 CSCD 北大核心 2024年第20期302-311,共10页
为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络... 为了在不增加网络参数量的条件下提升深度学习方法对织物缺陷检测的精度,提出了一种基于改进YOLOv5的织物缺陷检测方法。通过深度卷积改造通道注意力,剪裁最大池化优化空间注意力,并通过二者构建的双级联注意力机制来搭建特征提取子网络,从而提高网络对缺陷区域纹理和语义特征的提取能力;采用鬼影混洗卷积改进特征融合子网络,强化对提取特征的筛选,在降低模型参数量的同时,改善缺陷信息丢失和无效信息冗余问题;在检测端引入具有角度损失的新型损失函数SIOU,来促进真实框和预测框的拟合并提升对缺陷预测的准确性。实验结果表明:改进的YOLOv5方法在降低YOLOv5基准模型复杂度和计算量的同时,与YOLOv7等六种先进方法相比,可获得更高的检测精度,相较原模型mAP@0.5值提高了2.6个百分点,mAP@0.5:0.9值提高了1.3个百分点。 展开更多
关键词 织物缺陷检测 卷积神经网络 YOLOv5 双级联注意力机制 损失函数
下载PDF
基于改进鲸鱼算法优化SVM的软件缺陷检测方法
20
作者 杜晔 田晓清 +1 位作者 李昂 黎妹红 《信息网络安全》 CSCD 北大核心 2024年第8期1152-1162,共11页
为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞... 为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞行策略优化鲸鱼觅食阶段,最大限度地实现搜索代理多样化,并利用混合变异扰动算子提高WOA的全局寻优能力;然后采用改进的鲸鱼算法LFWOA对SVM的惩罚因子和核函数参数进行优化,在获得最优参数的同时可有效检测软件缺陷。仿真实验表明,在6个基准测试函数中,LFWOA展现出更高的寻优速度和全局搜索能力;在8个公开软件缺陷数据集上进行测试显示,LFWOA-SVM方法能够有效提高分类性能和预测精度。 展开更多
关键词 软件缺陷检测 Levy飞行 鲸鱼优化算法 变异扰动 支持向量机
下载PDF
上一页 1 2 248 下一页 到第
使用帮助 返回顶部