Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w...Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.展开更多
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, incl...Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.展开更多
The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental...The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.展开更多
The broadband emissivity is an important parameter for estimating the energy balance of the Earth. This study focuses on estimating the window (8 -12 μm) emissivity from the MODIS (mod- erate-resolution imaging sp...The broadband emissivity is an important parameter for estimating the energy balance of the Earth. This study focuses on estimating the window (8 -12 μm) emissivity from the MODIS (mod- erate-resolution imaging spectroradiometer) data, and two methods are built. The regression method obtains the broadband emissivity from MODllB1 - 5KM product, whose coefficient is developed by using 128 spectra, and the standard deviation of error is about 0.0118 and the mean error is about O. 0084. Although the estimation accuracy is very high while the broadband emissivity is estimated from the emissivity of bands 29, 31 and 32 obtained from MOD11B1 _ 5KM product, the standard deviations of errors of single emissivity in bands 29, 31, 32 are about 0.009 for MOD11B1 5KM product, so the total error is about O. 02 and resolution is about 5km × 5km. A combined radiative transfer model with dynamic learning neural network method is used to estimate the broadband emis- sivity from MODIS 1B data. The standard deviation of error is about 0.016, the mean error is about 0.01, and the resolution is about 1 km x 1 km. The validation and application analysis indicates that the regression is simpler and more practical, and estimation accuracy of the dynamic learning neural network method is higher. Considering the needs for accuracy and practicalities in application, one of them can be chosen to estimate the broadband emissivity from MODIS data.展开更多
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol...Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.展开更多
Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple li...Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression(MLR)and artificial neural network(ANN). This simple linear model shows a low average relative deviation(AARD) of 2.8% for a data set including 50(40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance.ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%.展开更多
The mixed solutions of brilliant blue and indigotine are prepared and the fluorescence spectra of them are experimentally measured. The serious overlapping spectra of brilliant blue and indigotine are solved by means ...The mixed solutions of brilliant blue and indigotine are prepared and the fluorescence spectra of them are experimentally measured. The serious overlapping spectra of brilliant blue and indigotine are solved by means of the first-derivative fluorescence spectrometry. The wavelet coefficients, obtained by compressing the spectral data using wavelet transformation (WT), are taken as inputs to establish the radial basis function neural network (RBFNN). The neural network model can realize simultaneous determination of brilliant bFue and indigotine, and the mean relative errors of both compounds are 1.84% and 1.26%, respectively展开更多
基金Sponsored by the Natural Science Foundation of Guangdong Province(Grant No.06025546)the National Natural Science Foundation of China(Grant No.50305005).
文摘Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.
基金Under the auspices of National Natural Science Foundation of China(No.41201420,41130744)Beijing Nova Program(No.Z111106054511097)Foundation of Beijing Municipal Commission of Education(No.KM201110028016)
文摘Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.
基金Project(CDJZR14130006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.
基金Supported by the National Program on Key Basic Research Project(No.2010CB951503,2013BAC03B00,2012AA120905)
文摘The broadband emissivity is an important parameter for estimating the energy balance of the Earth. This study focuses on estimating the window (8 -12 μm) emissivity from the MODIS (mod- erate-resolution imaging spectroradiometer) data, and two methods are built. The regression method obtains the broadband emissivity from MODllB1 - 5KM product, whose coefficient is developed by using 128 spectra, and the standard deviation of error is about 0.0118 and the mean error is about O. 0084. Although the estimation accuracy is very high while the broadband emissivity is estimated from the emissivity of bands 29, 31 and 32 obtained from MOD11B1 _ 5KM product, the standard deviations of errors of single emissivity in bands 29, 31, 32 are about 0.009 for MOD11B1 5KM product, so the total error is about O. 02 and resolution is about 5km × 5km. A combined radiative transfer model with dynamic learning neural network method is used to estimate the broadband emis- sivity from MODIS 1B data. The standard deviation of error is about 0.016, the mean error is about 0.01, and the resolution is about 1 km x 1 km. The validation and application analysis indicates that the regression is simpler and more practical, and estimation accuracy of the dynamic learning neural network method is higher. Considering the needs for accuracy and practicalities in application, one of them can be chosen to estimate the broadband emissivity from MODIS data.
基金the sponsor CSIR (Council of Scientific and Industrial Research), New Delhi for their financial grant to carry out the present research work
文摘Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.
基金Projects(21376031,21075011)supported by the National Natural Science Foundation of ChinaProject(2012GK3058)supported by the Foundation of Hunan Provincial Science and Technology Department,China+2 种基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2014CL01)supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject supported by the Innovation Experiment Program for University Students of Changsha University of Science and Technology,China
文摘Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression(MLR)and artificial neural network(ANN). This simple linear model shows a low average relative deviation(AARD) of 2.8% for a data set including 50(40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance.ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No.200802950005)the Jiangsu Provincial Natural Science Foundation (No.BK2009066)the Project of Educational Commission of Jiangsu Province (Nos.JH08-18 and CX08B-088Z)
文摘The mixed solutions of brilliant blue and indigotine are prepared and the fluorescence spectra of them are experimentally measured. The serious overlapping spectra of brilliant blue and indigotine are solved by means of the first-derivative fluorescence spectrometry. The wavelet coefficients, obtained by compressing the spectral data using wavelet transformation (WT), are taken as inputs to establish the radial basis function neural network (RBFNN). The neural network model can realize simultaneous determination of brilliant bFue and indigotine, and the mean relative errors of both compounds are 1.84% and 1.26%, respectively